

START2

Superfund Technical Assessment and Response Team 2 - Region VIII

United States Environmental Protection Agency

Contract No. 68-W-00-118

REMOVAL SUMMARY REPORT

SUPERIOR WASTE ROCK (ROS)
Superior, Mineral County, Montana

TDD No. 0208-0002

DECEMBER 3, 2002

In association with: Tetra Tech EM, Inc.

URS Corporation

LT Environmental, Inc.

TN & Associates, Inc.

TechLaw, Inc.

URS OPERATING SERVICES

1099 18TH STREET SUITE 710

DENVER, COLORADO 80202-1908

TEL: (303) 296-3523 FAX: (303) 291-8296

December 3, 2002

Mr. Tien Nguyen
On-Scene Coordinator
U.S. Environmental Protection Agency, Region VIII
999 18th Street, Suite 500, Mail Code: 8EPR-ER
Denver, Colorado 80202

SUBJECT: START, EPA Region VIII, Contract No. 68-W-00-118, TDD No. 0208-0002

Removal Summary Report - Superior Waste Rock, Superior, Mineral County,

Montana

Dear Tien:

Enclosed are two copies of the final Removal Summary Report for the Superior Waste Rock (ROS) site, Superior, Mineral County, Montana. Sampling activities were completed August 19 through August 30, 2002. This document is submitted for your review and approval.

If you have any questions, please call me at 303-291-8229.

Very truly yours,

URS OPERATING SERVICES, INC.

Rebecca Laramie

Environmental Engineer

attachments

cc: T. F. Staible/UOS

without attachments

File/UOS

Superior Waste Rock - RSR Signature Page Revision: 0 Date: 12/2002 Page i of iv

REMOVAL SUMMARY REPORT

SUPERIOR WASTE ROCK (ROS) Superior, Mineral County, Montana

EPA Contract No. 68-W-00-118 TDD No. 0208-0002

Prepared By: Rebecca Laramie Environmental Engineer

URS Operating Services, Inc. 1099 18th Street, Suite 710 Denver, CO 80202-1908

Approved:	Tien Nguyen, On-Scene Coordinator, EPA, Region VIII	Date:		
Approved:	T. F. Staible, START2 Program Manager, UOS	Date: 2 Du Oz		
Approved:	Rebecca Laramie, Environmental Engineer, UOS	Date: <u>/2/02/02</u>		

This document has been prepared for the U.S. Environmental Protection Agency under Contract No. 68-W-00-118. The material contained herein is not to be disclosed to, discussed with, or made available to any person or persons for any reason without prior express approval of a responsible officer of the U.S. Environmental Protection Agency. In the interest of conserving natural resources, this document is printed on recycled paper and double-sided as appropriate.

Superior Waste Rock - RSR
Distribution List
Revision: 0
Date: 12/2002
Page ii of iv

DISTRIBUTION LIST

U.S. ENVIRONMENTAL PROTECTION AGENCY

Tien Nguyen (2 copies)

OSC, EPA Region VIII

URS OPERATING SERVICES, INC.

Rebecca Laramie File (2 copies) Environmental Engineer, Region VIII START2

START2, EPA Region VIII

Superior Waste Rock - RSR Table of Contents Revision: 0 Date: 12/2002 Page iii of iv

REMOVAL SUMMARY REPORT Superior Waste Rock (ROS) Superior, Mineral County, Montana

TABLE OF CONTENTS

				PAGE #
SIG	NATUR	RE PAGE		i
DIST	rribu'	TION LIST		. i i
TAB	LE OF	CONTENTS	,	ii i
1.0	INT	RODUCTION		1
2.0	OBJ	ECTIVES		. 1
3.0	SITI	E HISTORY AND PREVIOUS WORK	•	2
4.0	SITI	E ACTIVITIES AND OBSERVATIONS	•	3
	4.1	Sampling Activities and Sample Identification		
		4.1.1 Post Removal Samples		
		4.1.2 Stockpile and Stabilization Samples	•	
		4.1.3 Miscellaneous Samples		
	4.2	Analytical Parameters		
	4.3	Air Monitoring	·	
5.0	QUA	LITY ASSURANCE AND QUALITY CONTROL	,	8
	5.1	Laboratory Quality Control		
	5.2	Field Quality Control	•	
		5.2.1 XRF Analysis		
		5.2.2 Field Quality Control Samples		
6.0	ANA	LYTICAL DATA EVALUATION		10
7.0	SAM	PLE RESULTS		11
8.0	SUM	MARY		13
9.0	LIST	OF REFERENCES		14

Superior Waste Rock - RSR Table of Contents Revision: 0 Date: 12/2002 Page iv of iv

TABLE OF CONTENTS (continued)

FIGURES

Figure 1 Superior Removal Locations

TABLES

Table 1	Comparison of Assessment Samples to Post Excavation Samples
Table 2	XRF Sample Results
Table 3	Laboratory and XRF Results
Table 4	TCLP Results
Table 5	Air Monitoring Summary

APPENDICES

Appendix A	Photolog
Appendix B	Validation Reports and Laboratory Data
Appendix C	XRF Results
Appendix D	Street Codes for Sample Identification
Appendix E	Bench Scale Stabilization Test Procedure

> Date: 12/2002 Page 1 of 24

1.0 <u>INTRODUCTION</u>

The URS Operating Services, Inc. (UOS) Superfund Technical Assessment and Response Team (START2)

was tasked by the U.S. Environmental Protection Agency (EPA), Region VIII, under Technical Direction

Document (TDD) #0208-0002, to conduct environmental sampling in Superior, Montana, as part of removal

activities. The removal activities and sampling were completed between August 19 and August 30, 2002.

This report describes the field activities completed and the analytical results associated with the removal

activities.

During June 2002, soil samples were collected from 64 residential properties, 20 right-of-ways, and 10

city/county and open space properties within and around Superior, Montana, as part of a removal

assessment. Soil samples were field analyzed using an X-Ray Fluorescence Spectrometer (XRF) with 10%

of the samples being sent to a commercial laboratory for confirmation analysis. Five samples were also

laboratory analyzed for lead and arsenic speciation and relative bioavailability estimates. Using the

analytical results, EPA established health-based risk benchmarks of 3,000 parts per million (ppm) for lead

and 400 ppm for arsenic. Based on these benchmarks, removal activities were conducted at three residential

driveways, three right-of-ways, the high school track, and the county fairgrounds during August 2002.

START2 tasks included collecting post-removal soil samples at the base of each excavation, completing a

bench scale stabilization test, and documenting activities during the removal.

Soil samples collected during the removal activities were field analyzed with an XRF for metals.

Approximately 10% of these soil samples were also sent to a commercial laboratory for confirmation analysis

of target analyte list (TAL) metals. In addition, Toxicity Characteristic Leaching Procedure (TCLP) analysis

for metals was performed on representative samples from the stockpiled waste material and from bench scale

stabilization tests. Confirmation sample results and TCLP sample results were validated in accordance with

the criteria contained in EPA guidance documents modified for the analytical method used (U.S.

Environmental Protection Agency (EPA) 1994a).

2.0 OBJECTIVES

The goal of the sampling activities is to document the post-removal concentrations of metals at the base of

each excavation. Samples were also collected from the waste material to determine proper stabilization

and/or disposal methods for the stockpiled waste material.

TDD No. 0208-0002

P:\Start2\Superior Waste Rock\Final RSR\Text.wpd

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 2 of 24

3.0 <u>SITE HISTORY AND PREVIOUS WORK</u>

The Superior Waste Rock site includes residential areas in or around Superior, Montana, that were affected by tailings and waste rock from The Iron Mountain Mine and Mill. The Iron Mountain Mine and Mill is located approximately 3.5 miles north of Superior. The Iron Mountain Mine and Mill operated from 1909 to 1930 and again from 1947 to 1953 (Montana Department of Environmental Quality (Montana DEQ) 2001). The present owner, ASARCO of Wallace, Idaho, acquired the property around 1916. The mine has been abandoned since 1954 and foundations are all that remain of the mill and other mining buildings. When operating, the mill site consisted of a 200-ton mill and approximately 500 feet of tunnels (Montana Department of State Lands - Abandoned Mine Reclamation Bureau (MDSL-AMRB) 1993). The mill operation processed silver, gold, lead, copper, and zinc ores (Montana DEQ 2001). The mill also accepted ore from the Dillon Mill and the Belle of the Hills Mine, which were located upgradient of the Iron Mountain Mill site. It is believed that the Iron Mountain Mill used flotation methods to separate the metals. Although the waste rock pile still remains on site, most of the tailings were washed down onto the Flat Creek floodplain (MDSL-AMRB 1993). Previous START2 sampling activities indicate that a portion of the tailings from the Iron Mountain Mill was used as fill in the town of Superior (URS Operating Services, Inc. (UOS) 2002a).

During 1993, the Montana Department of State Lands, Abandoned Mine Reclamation Bureau (MDSL-AMRB) conducted an abandoned mine investigation to determine the potential health and environmental risks associated with the Iron Mountain Mine and Mill site. The Abandoned Hardrock Mine Priority Sites Summary Report documents concentrations of arsenic, copper, mercury, lead, zinc, cadmium, manganese, and antimony at the mill site at more than three times the background sample concentration (MDSL-AMRB 1993).

In 1998, reclamation activities were conducted by ASARCO, the current owner of the mill site. These activities consisted of removing some tailings from Flat Creek and placing them on the ASARCO property (Iron Mountain Mine) in an impoundment. The impoundment was covered with topsoil and vegetated (ASARCO 1999). Additional tailings along Flat Creek were revegetated in place (UOS 2001b). No sampling data were available for Flat Creek following the ASARCO removal activities. Sample results from the most recent and complete monitoring conducted in 1997 are included in the Preliminary Assessment (PA) report prepared by START2 (UOS 2001a).

> Date: 12/2002 Page 3 of 24

During 2001, Region VIII EPA conducted a PA/Site Investigation at the Iron Mountain Mill site. START2 collected 44 environmental samples as part of the SI during October 2001. Eleven soil samples were collected from the high school track and residential properties in Superior. Soil samples collected from the high school track indicated elevated concentrations of metals including lead and arsenic. Samples collected from a residential property and a right-of-way in a residential neighborhood also indicated elevated concentrations of lead and arsenic. Because of these results, the Region VIII EPA tasked START2 to collect

additional samples from the town of Superior as part of a removal assessment.

During June 2002, additional sampling activities were conducted by START2 to further delineate areas in Superior where tailings were used as fill material. Samples were collected and field analyzed from a total of 64 residential properties, 20 right-of-ways, and 10 city/county and open space properties within and around Superior, Montana (UOS 2002/SAR). Five samples were also laboratory analyzed for lead and arsenic speciation and relative bioavailability estimates. These samples were used to determine areas requiring the removal activities discussed in this report.

4.0 SITE ACTIVITIES AND OBSERVATIONS

Removal activities were conducted on three residential driveways, three right-of-ways, the high school track, and the county fairgrounds (Photos 6 through 13). Environmental Restoration L.L.C completed the removal activities, which consisted of excavating the contaminated material, stockpiling the material at the staging area, and backfilling the excavated area using predetermined fill. The staging area was located at the county airport and consisted of two stockpiles. Stockpile A contained material that visually appeared contaminated (Photo 14) and stockpile B contained material that visually appeared clean (Photo 15). Both stockpiles were lined and covered with visqueen to prevent dispersion of the contaminants. START2 was tasked to document activities during the removal, to collect samples at the base of each excavation, to collect samples from each stockpile at the staging area, and to complete a bench scale stabilization test on the excavated material.

START2 field operations were conducted as described below, in accordance with the EPA Region VIII Residential Soil Lead Sampling Guidance Document, START2 Technical Standard Operating Procedures (TSOPs), the UOS Field Samplers Guide, and the site specific Health and Safety Plan (EPA 2000; UOS 2000; UOS 1998; UOS 2002b). Sampling activities were conducted in level D personal protective equipment (PPE).

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 4 of 24

4.1 SAMPLING ACTIVITIES AND SAMPLE IDENTIFICATION

All samples were collected with dedicated disposable plastic scoops. Sample identifiers were written on each sample container with waterproof ink along with the date and time of sample collection. Sample identifiers, sample date and time, and the location of each sample were also documented in field log book at the time of sample collection.

4.1.1 Post Removal Samples

Post removal samples were collected after each excavation of contaminated material to document metals concentrations at the base of the excavation. In small areas of excavation (right-of-ways and residential driveways) one composite sample was collected as a representative sample for the area. In larger areas (the high school track and fairgrounds) the excavated area was divided into sections and a composite sample was collected from each section. Each sample was homogenized before analysis. All post removal samples were analyzed using the Spectrace XRF with 10% of samples being sent to a commercial laboratory for confirmation analysis. Sample results from the XRF are listed in Table 1. Table 1 also lists the removal assessment results collected in the excavated areas before excavation occurred. These results delineated the areas for removal actions.

Residential samples were identified based on the area sampled. Samples had similar designations to the samples collected during the removal assessment samples. Samples were designated as follows. The first field is the letter "S" that designates the sampling event as Superior Waste Rock site. The second field is the four digit house number. The third field is two letters that represent the street on which the property is located (Appendix D). The fourth field is the section or zone number (most sample locations are considered zone 1). The fifth field indicates that the sample is a post excavation sample (Z) and the number of samples collected from that zone (1,2,3). The last field indicates if the sample is a replicate (R), duplicate (D), or equipment blank (B) sample. If the last field is null, the sample is not a field quality control sample.

Street right-of-way samples were labeled similarly to the residential samples except that the house number was replaced with the block number, and the section number was replaced

Date: 12/2002 Page 5 of 24

with the letter N, S, E, or W to denote the right-of-way direction. The high school track samples were labeled with S0400HT followed by the zone number (the track was zone 4), a Z to signify post excavation samples, and a number (1 through 12) to designate the number of samples collected. Finally, the fairground samples were labeled with S700FG1 to signify the fairgrounds, followed by a Z to signify post excavation samples, and a number (1

4.1.2 Stockpile and Stabilization Samples

through 2) to designate the number of samples collected.

Material excavated during removal activities was placed in two separate stockpiles based on visual observations. Red material that appeared to be tailings was placed in Stockpile A. This material was typically from the surface of the excavation. Material that appeared more natural was placed in Stockpile B. Once all excavation was completed, a composite sample was collected from each stockpile to determine if metals concentrations were above their respective TCLP regulatory levels for disposal.

Material composited from stockpile A was also used to complete a bench scale test for stabilization of leachable metals. This material was used because it was likely to have the highest concentrations of metals. The bench scale test used varying amounts of Portland cement to stabilize the metals in the tailings. Specifically, 7%,10%, 15%, and 20% cement by weight was added to the material collected from stockpile. A. Each mixture was homogenized and then mixed with water. The total mixture was allowed to cure for 24 hours before a sample was collected from each stabilization option. Samples were sent to a commercial laboratory for TCLP analysis and were compared to analysis from a control sample with no cement added to the material. The exact procedure for the bench scale test is described in Appendix E. Results are presented in Table 4.

Stockpile samples were labeled with the designation SOSTKPLA or SOSTKPLB to identify the stockpile, followed by a number representing the number of samples collected from the stockpile. Stabilization samples were designated with similar labels; however, the number representing the number of samples was changed to represent the percentage of cement added to the material (00 for 0%, 07 for 7%, etc.). All stabilization samples consisted of material from Stockpile A. The last field for both stockpile and stabilization samples

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 6 of 24

indicates if the sample is a replicate (R), duplicate (D), or equipment blank (B) sample. If the last field is null, the sample is not a field quality control sample.

4.1.3 <u>Miscellaneous Samples</u>

During removal activities, several samples were collected that were not classified as post removal samples or stabilization/stockpile samples. Several samples were collected from potential clean fill material. These samples are labeled with SOFILL and a letter to distinguish each supplier and a number to distinguish the pile of fill sampled. Samples were also collected from the staging area before it was disturbed to document background concentrations. These samples are labeled SOSTGAR with a letter to distinguish each sample. Finally ten samples were collected to further delineate contaminated areas or to test for the presence of elevated metals in areas that had not been tested previously. These samples are identified using the same methods as those used during the removal assessment and are classified in Table 2 as Assessment samples.

Specifically, two samples were collected from a residential property located at the northeast corner of Flat Creek Road and Cemetery Road. These samples were collected as supplemental samples to one sample collected from the same property during the removal assessment conducted in June 2002. Sample S00FCCM1S2 was collected from the front portion of the property. Sample S00FCCM2S1 was collected along Flat Creek near the property. Two samples were also collected at a separate residential property located on the west side of Flat Creek Road and north of the corner of Flat Creek and Cemetery Road. Sample S0041FC1S1 was collected in the front yard of the property and sample S0041FC1S2 was collected in the back yard of the property. Both properties are owned by the same person and were sampled under the address 41 Flat Creek Road. The sample identifier was modified for the property at the intersection of Flat Creek Road and Cemetery Road to distinguish between the properties. While both of these properties had residential structures, during sampling activities both houses were vacant.

Samples S0400HT1S2; S0407IH1A1; S0700FC1A13, S0700FGA6, and F0700FGA3 were collected from the high school track, 407 Iron Mountain Heights, and the fairgrounds respectively. All of these properties had been previously sampled and removal activities

Superior Waste Rock - RSR Revision: 0 Date: 12/2002

Page 7 of 24

were deemed necessary. The previously mentioned samples were collected to further

delineate the contaminated material present at each site.

Sample S0401SP1S1 was collected from a property that had not previously been sampled.

Property owners at 401 Spruce Street requested the EPA to conduct sampling on their

driveway where material appeared to be consistent with mill tailings. Sample results

indicated elevated levels of lead and arsenic and removal activities were completed on the

driveway. Samples were also collected from the driveway after excavation was completed

as described in Section 4.1.1.

4.2 ANALYTICAL PARAMETERS

Soil samples were analyzed by START2 using a Spectrace 9000® Field Portable XRF. XRF sample

preparation followed the general guidelines set forth below and in Standard Operating Procedure

(SOP) 6 from the EPA Bioavailability Study (EPA 1994b). Sample preparation is also described in

detail in the site specific removal assessment Sampling and Analysis Plan (SAP) (UOS 2002c). In

general soil samples were homogenized, dried, sieved using a 10-mesh sieve, and placed in an

appropriate container for analysis.

The XRF was operated as per Environmental Response Team (ERT) SOP 1713 and manufacturers

specifications. Quality control for the instrument is discussed in Section 5.2 of this report. Samples

were analyzed on the XRF using analysis times of 180 seconds for the source Cd-109, 30 seconds

for the source Fe-55, and 30 seconds for the source Am-241.

A minimum of 10 percent of the total number of samples collected for field XRF analysis were also

sent to a commercial laboratory for TAL metals analysis (SW846 Method 6010B/7471) as

confirmation of field XRF results.

A total of six soil samples were selected and sent to an independent laboratory for TCLP analysis

(SW846 Methods 1311/6010B/7471). The samples sent for TCLP analysis represented the samples

with the highest concentrations of metals. The acceptable holding times for these samples are 28

days for mercury and six months for all other metals. The definitive data were validated using the

Quality Assurance/Quality Control (QA/QC) procedures associated with definitive data. Information

TDD No. 0208-0002

P:\Start2\Superior Waste Rock\Final RSR\Text.wpd

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 8 of 24

pertaining to screening level and definitive data can be found in the Emergency Response Program (ERP) Generic Quality Assurance Project Plan (QAPP) (UOS 1999).

4.3 AIR MONITORING

Air monitoring was completed during removal activities at the high school track (Photo 5) and the county fairgrounds. These locations were chosen because they were the first properties where removal activities were completed and because they were close to the high school and elementary schools. Specifically, the Data Ram operated for 11 hours on August 24, 2002, during excavation of the high school track while the excavation was being completed on the area closest to the elementary school. During this time the Data RAM was positioned on the elementary school lawn close to the track and downwind of the track. It should be noted that excavation of the material at the high school track was completed before the school season started. In addition football practice was relocated to a nearby park until excavation was completed at the track to minimize exposure of elevated metals to residents of Superior. The Data RAM also operated for 6 hours during the entire excavation of contaminated material from the county fairgrounds. The Data RAM was placed inside the fairground fence line, but closest to the high school to document concentrations of dust near the school. During air monitoring, the Data RAM recorded the amount of PM-10 particulate downwind of the excavation activities (Table 5). Monitoring showed that the levels of dust created from the removal activities was minimal and did not create a health risk to residents in the area.

5.0 QUALITY ASSURANCE AND QUALITY CONTROL

5.1 LABORATORY QUALITY CONTROL

Specific QC criteria have been developed to ensure that the Data Quality Objectives (DQOs) established in the SAP can be achieved. Analytical methods for sample analysis have been selected on the basis of the required detection limits, known contaminants existing in the study area, and the range of analytes to be determined. XRF data will be evaluated as screening. Laboratory data will be evaluated as definitive. The Draft ERP Generic QAPP, Section 10.2 "Laboratory Quality Control," contains more specific information related to laboratory QC requirements for definitive data (UOS 1999).

Superior Waste Rock - RSR Revision: 0 Date: 12/2002

Page 9 of 24

5.2 FIELD QUALITY CONTROL

5.2.1 XRF Analysis

XRF field analytical data were evaluated as screening data, with an additional ten percent

of these samples being analyzed by an independent laboratory for definitive confirmation

analysis. All XRF data generated for this project were evaluated for instrument calibration,

detection limits, energy calibration checks, blank checks, and field replicates. The field

XRF was operated per ERT SOP 1713 and per manufacturer's specifications

(Environmental Response Team (ERT) 1995).

High lead concentrations may mask arsenic concentrations when analyzed on an XRF. The

arsenic detection limit for the XRF is either three times the standard deviation of the XRF

standard, or one-tenth the lead result, whichever is greater.

5.2.2 Field Quality Control Samples

In addition to the samples collected to determine elevated concentrations of metals, samples

were also collected and analyzed as part of the quality control process.

A duplicate XRF sample was prepared in the lab for every 20 soil samples.

A minimum of 1 per 10 soil samples collected for XRF analysis was analyzed by

an independent laboratory for confirmation of XRF analytical results. The XRF

sample cup was sent to the laboratory for analysis.

Sand rinsate blanks were collected a minimum of one per day to identify potential

contamination from the sample collection and preparation implements.

TDD No. 0208-0002

P:\Start2\Superior Waste Rock\Final RSR\Text.wpd

> Date: 12/2002 Page 10 of 24

6.0 ANALYTICAL DATA EVALUATION

All soil samples were analyzed with an XRF during field activities. The XRF field analytical data were evaluated as screening data according to the START ERP Generic QAPP with an additional ten percent of these samples being analyzed by and independent laboratory (CompuChem) for definitive confirmation analyses. All XRF data generated for this project were evaluated to ensure that instrument calibration, detection limits, energy calibration checks, blank checks, and field replicates were within operational control limits. The XRF was operated as per ERT SOP 1713, and per manufacturer's specifications.

Detection limits were calculated both for the XRF instrument used and for all laboratory confirmation samples. Detection limits were established as a value three times the standard deviation of a low National Institute of Standards and Technology (NIST) certified standard run a minimum of seven times over a specified period of time. In the case of arsenic, the detection limit is as stated above or one-tenth of the lead concentration for that sample, whichever is greater.

Validation of the confirmation laboratory data was completed by TechLaw, Inc. of Lakewood, Colorado. All data are acceptable for use as qualified in the data validation reports (Appendix B). The laboratory forms containing the laboratory results are also in Appendix B. Qualifiers used by laboratory validators consisted of U and J. A qualifier of U signifies that the metal was not detected at or above the associated numerical value for that sample. A qualifier of J signifies that the associated numerical value was estimated based on one of many reasons pertaining to laboratory quality assurance. While the value associated with the J qualifier is an estimate, the presence of the metal is reliable. Please refer to the data validation packages for specific criteria for all laboratory confirmation data.

The laboratory data and the XRF metal concentration data were compared using relative percent difference (RPD). Relative percent difference is the difference between the lab and XRF data divided by the average of the two values. This method shows less variability for the larger concentration data because the average (divisor) is higher and the result shows a lower RPD. At lower concentrations, a small variation between the values shows a larger RPD because the average is lower. This method for XRF data evaluation is more specific to whatever range of data is of most interest (usually the "action level"). RPD calculations for arsenic, antimony, lead, and zinc are reported in Table 2. The RPD was not calculated for those results that were qualified as U or J. An RPD value of 35 percent or less suggests an acceptable concentration variance.

Superior Waste Rock - RSR Revision: 0

Date: 12/2002

Page 11 of 24

Only one sample had an RPD calculated for the lead and arsenic concentrations above 35 percent. Sample

SOSTKPLB had RPDs of 52% and 44%, respectively (Table 3).

7.0 <u>SAMPLE RESULTS</u>

A total of 44 samples were collected during the removal activities conducted in Superior, Montana. This

included 3 sand rinsate samples and 3 duplicate sample aliquots analyzed according to field QA/QC

specifications.

Two samples were collected from the staging area located at the Mineral County Airport. These samples

were used to document metals concentrations at the airport before it was disturbed. The initial samples

collected indicated that the staging area did not have any elevated concentrations of metals present. Both

samples showed concentrations of lead and arsenic below 28 ppm and 34 ppm, respectively (Table 2).

Five soil samples were collected from three perspective clean fill source with a total of five types of materials

to be used as fill. In addition, samples were also collected by Environmental Response (ER) from one of the

fill material sources and sent to an independent laboratory for metals analysis. These sample results

indicated that all perspective fill material had acceptable metals concentrations.

Five soil samples were collected from residential areas that had not previously been sampled to assess the

concentrations of metals in the respective areas. These samples were collected from three locations and

indicated that only one location had metals concentrations above the EPA site specific action levels. The

driveway at 401 Spruce Street had 12,000 ppm lead and 2,800 ppm arsenic in the composite sample. This

location was added to the original list of properties to have removal activities completed on a portion of the

property. Samples were also collected from this property after removal activities as described in the

following paragraph.

A total of 19 soil samples were collected from locations after removal activities had been completed. The

samples were collected from the base of the excavation to document metals concentrations where excavation

had been completed. These samples are listed in Table 1 as post excavation samples and are compared to

the original sample results (assessment samples) from the material that was later excavated. All samples

collected at the base of excavation had metals concentrations below the site specific action levels set for

surficial soil. The highest concentrations of lead and arsenic in post excavation samples occurred at the high

TDD No. 0208-0002

P:\Start2\Superior Waste Rock\Final RSR\Text.wpd

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 12 of 24

school track and the fairgrounds. One sample from the high school track had 220 ppm arsenic and one sample from the fairgrounds had 1,300 ppm lead. Both samples were collected from the base of excavation (12 to 18 inches below ground surface (bgs)) and were covered with 12 to 18 inches of fill after the sample was collected.

> Date: 12/2002 Page 13 of 24

8.0 SUMMARY

Removal activities for the Superior Waste Rock site were completed between August 19 and August 30,

2002. Removal activities were completed at three residential properties, the high school track, the county

fairgrounds, and three city owned right-of-ways. A total of 44 samples were collected during the removal

activities. Specifically, 3 sand rinsate samples and 3 duplicate sample aliquots were analyzed according to

field OA/OC specification. Two samples were collected from the staging area located at the Mineral County

airport to document initial concentrations at the airport. Five soil samples were collected from perspective

clean fill and five soil samples were collected from residential areas that had not previously been sampled

to assess the concentrations of metals in the respective areas. A total of 19 soil samples were collected from

locations after removal activities had been completed to document metals concentrations at the base of each

excavation.

Soil samples were analyzed on site with an XRF for metals. A minimum of 10 percent of the total number

of samples collected for XRF analysis (seven samples) were sent to a commercial laboratory for TAL metals

analysis as confirmation of field XRF results. Six soil samples were also sent to a commercial laboratory

for TCLP analysis of TAL metals. These samples characterized the waste pile material located at the staging

area and also documented the effectiveness of different amounts of cement added to the material to stabilize

the leachability of metals.

Air monitoring was completed on two separate occasions to ensure that respirable particulates were not

exceeding standards and increasing health risks due to the excavation of material with elevated metals. Air

monitoring was completed for 11 hours during removal of contaminated material from the high school track.

Air monitoring was also completed for 6 hours during removal activities at the county fairgrounds. Both

times a Data RAM with a PM-10 extension was placed downwind of the excavation and at the point closest

to the elementary and high school. Air monitoring indicated that dust suppression methods were working

properly.

TDD No. 0208-0002

P:\Start2\Superior Waste Rock\Final RSR\Text.wpd

9.0 <u>LIST OF REFERENCES</u>

ASARCO. 1999. Letter from J. C. Pfahl, ASARCO, to Stephen Brown, Garlington, Lohn, and Robenson, PLLP. April 26, 1999.

Environmental Response Team (ERT). 1995. "Spectrace 9000 Field Portable X-Ray Fluorescence Operating Procedures." January 26, 1995.

Montana Department of Environmental Quality (Montana DEQ). 2001. Mining History web site. http://www.deq.state.mt.us. March 2, 2001.

Montana Department of State Lands - Abandoned Mine Reclamation Bureau (MDSL-AMRB). 1993. Abandoned Mine Inventory, Iron Mountain Mine and Mill site. July 23, 1993.

U.S. Environmental Protection Agency (EPA). 1994a. U.S. Environmental Protection Agency CLP National Functional Guidelines for Inorganic Data Review, EPA 540/R - 94/013 (2/94).

U.S. Environmental Protection Agency (EPA). 1994b. U.S. Environmental Protection Agency Region VIII Bioavailability Study - Phase II Investigations - Standard Operating Procedures. September 1994.

U.S. Environmental Protection Agency (EPA). 2000. Region VIII Superfund Program Residential Soil Lead Sampling Guidance Document. Draft Final. April 2000.

URS Operating Services, Inc. (UOS). 1998. "Field Sampler's Guide for Sample Collection and Documentation." February 1998.

URS Operating Services, Inc. (UOS). 1999. "Emergency Response Program (ERP) Generic Quality Assurance Project Plan (QAPP) for the Superfund Technical Assessment and Response Team (START), EPA Region VIII." March 11, 1999.

URS Operating Services, Inc. (UOS). 2000. START Standard Operating Procedures, Volume 4: Technical Standard Operating Procedures. September 2000.

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 15 of 24

URS Operating Services, Inc. (UOS). 2001a. Preliminary Assessment. Iron Mountain Mill, Superior, Mineral County, Montana. July 20, 2001.

URS Operating Services, Inc. (UOS). 2001b. Site visit/reconnaissance by Rebecca Laramie and Log Book #570. March 29, 2001.

URS Operating Services, Inc. (UOS). 2002a. Analytical Results Report for Focused Site Inspection, Iron Mountain Mill, Superior, Mineral County, Montana. January 24, 2002.

URS Operating Services, Inc. (UOS). 2002b. Site Health and Safety Plan for Superior Waste Rock. May 2002.

URS Operating Services, Inc. (UOS). 2002c. Sampling and Analysis Plan for Superior Waste Rock. May 23, 2002.

6TH AVENUE EAST

Removal Summary Report

TDD No. 0208-0002

Superior Waste Rock (ROS) Superior, Montana

Superior Removal Locations
Figure 1

December 2002

Oversize Map

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 17 of 24

TABLE 1
Comparison of Assessment Samples to Post Excavation Samples
Concentrations in ppm

Sample ID	Sample Type	Depth (inches bgs)	Date	Arse	nic	4 Lea		
106 3 rd AVENUE WEST - RESIDENTIAL DRIVEWAY								
S01063W1S3	Assessment	0 -3	June 2002	400	U	4,000		
S01063W1D1	Assessment	9-12	June 2002	34	U	29	J	
S01063W1Z1	Post Excavation	10	Sept 2002	37	U	120		
400 2nd AVENUE	WEST - SOUTH R	IGHT-OF-WAY				· -		
S04002WSD1	Assessment	0 -3	June 2002	100	J	770		
S04002W1S3	Assessment	0 -3	June 2002	1,200	-	8,000		
S04002W1D3	Assessment	9-12	June 2002	34	U	110		
S04002W1Z1	Post Excavation	12	Sept 2002	28	U	55		
HIGH SCHOOL	TRACK			_	_			
IM-SO-08	Assessment	0-3	Oct 2001	101		562		
IM-SO-20	Assessment	12-24	Oct 2001	79.4		423		
IM-SO-15	Assessment	0-3	Oct 2001	1,340		5,150		
S0400HT4D2	Assessment	9-12	June 2002	630		4,400		
IM-SO-16	Assessment	0-3	Oct 2001	1,690		4,950		
IM-SO-21	Assessment	12-24	Oct 2001	464		1,890	:	
IM-SO-17	Assessment	0-3	Oct 2001	438		1,910		
SO400HT4D3	Assessment	9-12	June 2002	370		1,100		
IM-SO-18	Assessment	0-3	Oct 2001	279		1,550		
IM-SO-22	Assessment	12-24	Oct 2001	1,360		8,500		
IM-SO-19	Assessment	0-3	Oct 2001	1,200		6,820		
SO400HT4D1	Assessment	9-12	June 2002	190	U	1,900		
SO400HT4S1	Assessment	0-3	Sept 2002	1,700		9,000		
SO400HT1S2	Assessment	0-3	Sept 2002	1,200		6,800		
S0400HT4Z01	Post Excavation	12-18	Sept 2002	220		420		
S0400HT4Z02	Post Excavation	12-18	Sept 2002	47	U	110		
S0400HT4Z03	Post Excavation	12-18	Sept 2002	55	J	86		
S0400HT4Z04	Post Excavation	12-18	Sept 2002	35	U	110		
S0400HT4Z05	Post Excavation	12-18	Sept 2002	73	J	280		

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 18 of 24

TABLE 1
Comparison of Assessment Samples to Post Excavation Samples
Concentrations in ppm
(continued)

Sample ID.	Sample Type	Depth (inches bgs)	Date	- Arsenic	le Vai			
S0400HT4Z06	Post Excavation	12-18	Sept 2002	47 U	290			
S0400HT4Z07	Post Excavation	12-18	Sept 2002	47 U	87			
S0400HT4Z08	Post Excavation	12-18	Sept 2002	47 U	21	U		
S0400HT4Z09	Post Excavation	12-18	Sept 2002	47 U	26	J		
S0400HT4Z10	Post Excavation	12-18	Sept 2002	47 U	31	J		
S0400HT4Z11	Post Excavation	12-18	Sept 2002	47 U	160			
S0400HT4Z12	Post Excavation	12-18	Sept 2002	47 U	120			
400 SPRUCE ST	REET - EAST RIGI	HT-OF-WAY						
S0400SPEC1	Assessment	0-3	June 2002	400	1,800			
S0400SPED1	Assessment	0-3	June 2002	68 J	300			
S0400SPEE1	Assessment	0-3	June 2002	67 U	670			
S0400SPEF1	Assessment	0-3	June 2002	170	270			
S0400SPEG1	Assessment	0-3	June 2002	150	1,300			
S0400SPEDX	Assessment	9-12	June 2002	34 U	23	U.		
S0400SPEZ1	Post Excavation	12	Sept 2002	37 U	57			
407 IRON MOUN	TAIN HEIGHTS -	RESIDENTIAL DRIVE	WAY	<u></u>				
S0407IH1S1	Assessment	0-3	June 2002	170 U	1,700			
S0407IH1D1	Assessment	9-12	June 2002	110 J	820			
S0407IH1A1	Assessment	12	Sept 2002	36 J	120			
S04071H1Z1	Post Excavation	8	Sept 2002	45 J	230			
401 SPRUCE STR	REET - RESIDENTI	AL DRIVEWAY	1					
S0401SP1S1	Assessment	0-3	Sept 2002	2,800	12,000			
S0401SP1Z1	Post Excavation	12	Sept 2002	110 J	560			
FAIRGROUNDS								
S700FGCSW1	Assessment	0-3	June 2002	1,500	7,700			
S700FGSWX	Assessment	9-12	June 2002	790	4,000			
5700FG1A13	Assessment	0-3	Sept 2002	200	850			
6700FG1A3	Assessment	0-3	Sept 2002	930	3,300			
5700FG1A6	Assessment	0-3	Sept 2002	2,400	7,500	-		

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 19 of 24

TABLE 1
Comparison of Assessment Samples to Post Excavation Samples
Concentrations in ppm

(continued)

		(continued)			
Sample ID	Sample Type	Depth (inches bgs)	Date	Arsenic **	Lead
S700FG1Z1	Post Excavation	8	Sept 2002	51 J	240
S700FG1Z2	Post Excavation	12	Sept 2002	130	1,300
400 3rd AVENUE	EAST - SOUTH RI	GHT-OF-WAY			
S04003ESD1	Assessment	0-3	June 2002	38 U	24 U
S04003ESE1	Assessment	0-3	June 2002	220 U	2,200
S04003ESF1	Assessment	0-3	June 2002	43 J	230
S04003ESG1	Assessment	0-3	June 2002	38 U	100
S04003ESDX	Assessment	9-12	June 2002	34 U	23 U
S04003ESZ1	Post Excavation	12	Sept 2002	28 U	34 J

The analyte was not detected above the associated value.

J The associated numerical value is an estimated quantity because quality control criteria were not met

bgs Below ground surface

U

Superior Waste Rock - RSR Revision: 0 Date: 12/2002 Page 20 of 24

TABLE 2 XRF Sample Results Concentrations in (ppm)

Sample ID	Type 2 P	Arsenic	Lead
S0041FC1S1	Assessment	. 37 U	88
S0041FC1S2	Assessment	37 U	14 J
S00FCCM1S2	Assessment	37 U	150
S00FCCM2S1	Assessment	320 U	3200
S01063W1Z1	Post excavation	37 U	120
S04002W1Z1	Post excavation	28 U	55
S04002W1Z1B	QA/QC	28 U	15 U
S04002W1Z1D	QA/QC	47 J	81
S04003E1Z1	Post excavation	28 U	34 J
S0400HT1S2	Assessment	1,200	6,800
S0400HT4Z01	Post excavation	220	420
S0400HT4Z02	Post excavation	47 U	110
S0400HT4Z03	Post excavation	55 J	86
S400HT4Z04	Post excavation	35 U	110
S0400HT4Z05	Post excavation	73 J	280
S0400HT4Z06	Post excavation	47 U	290
S0400HT4Z07	Post excavation	47 U	87
S0400HT4Z08	Post excavation	47 U	21 U
S0400HT4Z09	Post excavation	47 U	26 J
S0400HT4Z10	Post excavation	47 U	31 J
S0400HT4Z11	Post excavation	47 U	160
S0400HT4Z12	Post excavation	47 U	120
S0400SP1Z1	Post excavation	37 U	57
S0401SP1S1	Assessment	2,800	12,000
S0401SP1S1B	QA/QC	37 U	14 U

TABLE 2 XRF Sample Results Concentrations in (ppm) (continued)

Sample ID	Туре	Arsenic . T	Lead .
S0401SP1Z1	Post excavation	110 J	560
S0407IH1A1	Assessment	36 J	120
S0407IH1Z1	Post excavation	· 45 J	230
S0407IH1Z1B	QA/QC	28 U	21 U
S0700FG1A13	Assessment	200	850
S0700FG1A3	Assessment	930	3,300
S0700FG1A6	Assessment	2,400	7,500
S0700FG1Z1	Post excavation	51 J	240
S0700FG1Z2	Post excavation	130	1,300
S0FILLA1	Fill Material	34 U	28 U
S0FILLA2	Fill Material	34 U	28 U
S0FILLB1	Fill Material	58 J	21 U
S0FILLB2	Fill Material	28 U	21 U
S0FILLB2D	QA/QC	28 U	21 U
S0FILLC1	Fill Material	28 U	21 _. U
S0STGARA1	Staging Area	34 U	28 U
S0STGARA1D	QA/QC	34 U	28 U
S0STGARA2	Staging Area	34 U	28 U
SOSTKPLA1	Stockpile A	890	4,800
SOSTKPLB1	Stockpile B	130	400

U The analyte was not detected above the associated value.

J The associated numerical value is an estimated quantity because quality control criteria were not met

Date: 12/2002 Page 22 of 24

TABLE 3 Laboratory and XRF Results (ppm)

		A Emily			William To			Lead		The state of the s	Zinc	
A Shipple Til.					WXRE A	3.30	Lab	XRF	RPD	Lab	XRF	RPD
S0STKPLB1	138 J	88 J	44	40.8 J	901	182	682	400	52	948. J	1,100	15
S0STKPLA1	999 J	910	9	558 J	1858	108	5,700	4,800	17	5,370 J	2,900	60
S700FG1Z1	50.6 J	51 J	1	15.9 J	56 U	NA	276	240	14	955 J	1,100	·14
S0401SP1S1	3,050 J	2,800	9	2,560 J	2,700	5	15,100	12,000	23	11,600 J	6,000	64
S0400HT4Z09	8.1 J	47 U	NA	3.4 J	39 U	NA	25.1	26 J	4	31.2 J	84 J	92
S01063W1Z1	28.9 J	37 U	NA	13.6 J	46 U	NA	168	120	33	246 J	270	9
S0041FC1S1	4.6 J	37 U	NA	1.2 J	46 U	NA	65.8	88	29	194 J	320	49

U The analyte was not detected above the associated value.

The associated numerical value is an estimated quantity because quality control criteria were not met

The associated numerical value was detected below the CRDL, but greater than the method detection limit and is therefore an estimate. Presence of compound is reliable []

RPD Relative Percent Difference (%)

Not applicable. NA

Date: 12/2002 Page 23 of 24

TABLE 4
TCLP Results (mg/L)

Sample 3-12			Regiment.	e chromium	Lead	Mercury	Selenium	* Silver
Regulatory	5	1,000	1	5	5	0.2	1	. 5
Stockpile A	0.028	0.85	0.29	0.006 U	17.5	0.0002 U	0.01 U	0.005 U
7% to Stockpile A	0.47	0.63	0.002 U	0.066	0.005	0.0002 U	0.01 U	0.005 U
10% to Stockpile A	0.027	1	0.002 U	0.087	0.04	0.0002 U	0.01 U	0.005 U
15% to Stockpile A	0.01 U	1.3	0.002 U	0.087	0.11	0.0002 U	0.01 U	0.005 U
20% to Stockpile A	0.01 U	1.5	0.002 U	0.071	0.18	0.0002 U	0.01 U	0.005 U
Stockpile B	0.01 U	1.4	0.13	0.006 U	0.77	0.0002 U	0.01 U	0.005 U

U The analyte was not detected above the associated value.

Date: 12/2002 Page 24 of 24

TABLE 5 Air Monitoring Summary

Monitoring Date	8/24/02	8/27/02
Excavation Location	High School Track	Fairgrounds
Data RAM Location	Elementary School Lawn	NW corner of Fairgrounds, inside chain link fence
Start Time	7:26:43	7:36:59
Run Time	665 minutes	360 minutes
Avg Mass	3.3 µg/m³	7.7 μg/m³
Max Mass	51 μg/m ³	19 μg/m³
Reason for Maximum Reading	Mowing Lawn in vicinity of Data RAM	Truck driving on High School Track

μg/m³ Micrograms per cubic meter

APPENDIX A

Photolog

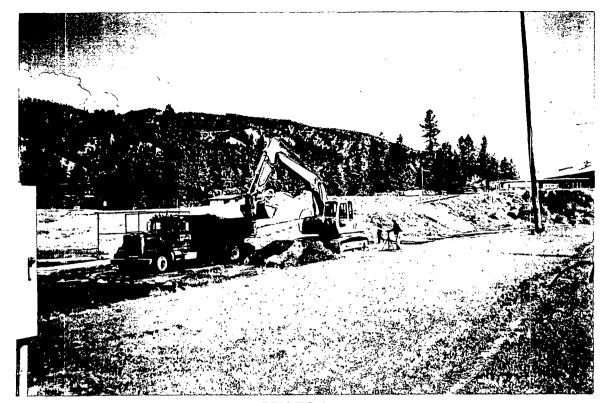


PHOTO 1
Removal activities at the high school track.

PHOTO 2

Edge of the removal area at the high school track.

PHOTO 3
Removal activities at the county fairgrounds.

PHOTO 4
Removal activities at the right-of-way for the 400 block of 2nd Avenue West.

Data RAM placed on the elementary school lawn to monitor dust from the high school track removal activities.

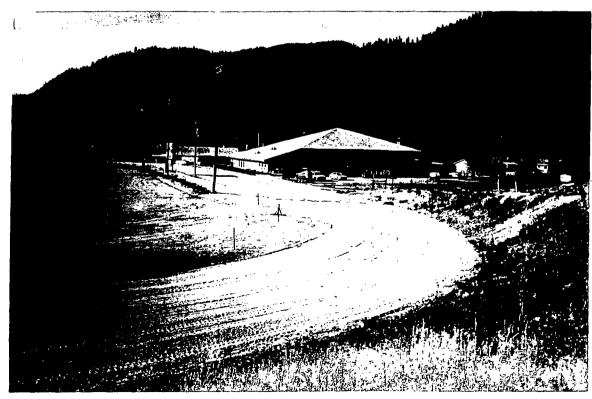


PHOTO 6
High school track with clean fill.

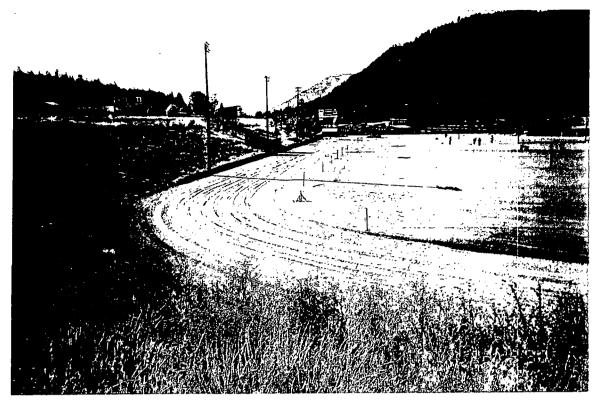


PHOTO 7
High school track with clean fill.

PHOTO 8

View of driveway at 407 Iron Mountain Heights after removal activities are complete. Lighter material is clean fill.

Photo 9
View of right-of-way at the block of 400 Spruce after removal activities are complete.

Photo 10
View of the driveway at 401 Spruce Street after removal activities are complete.

Photo 11
View of the right-of-way at the 400 block of 3rd Avenue East after removal activities are complete.

Photo 12

View of the right-of-way at the 400 block of 3rd Avenue West after the removal activities were completed.

Photo 13
View of the driveway at 106 3rd Avenue West after the removal activities were completed.

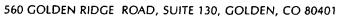

Photo 14
Stockpile A located at the staging area after all removal activities were completed.

Photo 15
Stockpile B located at the staging area after all removal activities were completes.

APPENDIX B

Validation Reports and Laboratory Data

TECHLAW INC.

PHONE: (303) 763-7188

FAX: (303) 763-4896

October 16, 2002

Mr. Kent Alexander URS Operating Services 1099 18th Street, Suite 710 Denver, CO 80202

RE: Transmittal of Data Validation Reports

Superior Waste Rock TDD No. 0208-0002 Report Nos. 103307

Dear Mr. Alexander:

Please find enclosed one validation report for TDD No. 0208-0002 for the Superior Waste Rock project. This reports is for the validation of metals analyses.

If you have any questions regarding the enclosed reports, please contact me at (303) 763-7188.

Yours sincerely, TECHLAW, INC.

Bill Fear Staff Consultant

enclosure IF: 01027-081

REGION VIII DATA VALIDATION REPORT INORGANIC

TDD No.	Site	Name	Operable Unit
0208-0002	Superior Waste R	lock	·
RPM/OSC Name			
Tien Nguyen			
Contractor Laboratory	Contract No.	Job No.	Laboratory DPO/Region
SVL Analytical Inc.	Not Indicated	103307	

Review Assigned Date	October 7, 2002	Data Validator	Amy Ballow
Review Completion Date_	October 9, 2002	Report Reviewer _	Bill Fear

Sample Number	Laboratory ID	Matrix	Analysis
S0STKPLB1	S311633	Soil	Metals and Mercury
S0STKPLA1	S311634		
S0700FG1Z1	S311635		
S0401SP1S1	S311636		
S0400HT4209	S311637	·	
S01063W121	S311638	i	
S0041FC1S1	S311639		

DATA QUALITY STATEMENT

()	Data are ACCEPTABLE according to by the reviewer.	EPA Functional guidelines with no qualifiers (flags) added			
()	Data are UNACCEPTABLE according	to EPA Functional Guidelines.			
(X)	X) Data are acceptable with QUALIFICATIONS noted in review.				
Telepl	none/Communication Logs Enclosed?	Yes NoX			
TPO A	Attention Required? Yes X	No If yes, list the items that require attention:			
•	These samples were collected on Augu	st 25 and 28, 2002 but were not received by the laboratory			

until September 23, 2002. As a result, mercury was analyzed beyond the 28-day holding time.

INORGANIC DATA VALIDATION REPORT

REVIEW NARRATIVE SUMMARY

This data package was reviewed according to "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994.

Raw data were reviewed for completeness and transcription accuracy onto the summary forms. Approximately 10-20% of the results reported in <u>each</u> of the samples, calibrations, and QC analyses were recalculated and verified. If problems were identified during the recalculation of results, a more thorough calculation check was performed.

Job No. 103307 consisted of seven soil samples for metals and mercury analyses.

The following table lists the data qualifiers added to the sample analyses. Please see Data Qualifier Definitions, attached to the end of this report.

Sample ID	Elements	Qualifiers	Reason for Qualification	Review Section
All samples	Mercury	J	Holding times	II
	Antimony Arsenic		Matrix spike recovery below QC limits	IX
	Zinc		Laboratory duplicate RPD >35%	ΧI
S0STKPLB1 S0700FG1Z1 S0400HT4209 S0041FC1S1	Selenium	UJ	Analytical spike recovery below QC limits	XII
S0STKPLA1 S0401SP1S1 S0400HT4209 S01063W121 S0041FC1S1	Thallium		0	
All samples	Copper	J	Serial dilution %D greater than 10% and original sample value at least 50*IDL	xv

Data Validation Report

Method/SOW	Number	6010B,	7740,	7841,	7471
Revision	0.0				

Inorganic Deliverables Completeness Checklist

<u>P</u>	Inorganic Cover Page		
<u>P</u>	Inorganic Analysis Data Sheets		
P	Initial Calibration and Calibration Verification Results	•	
P	Continuing Calibration Verification Results		
P	CRDL Standard for ICP and AA	, .	
P	Blank Analysis Results		
P	ICP Interference Check Sample Results		
P	Spiked Sample Results		
P	Post-digest Spiked Sample Analysis		
\overline{P}	Duplicate Sample Results		
P	Instrument Detection Limits		
P P P P P P P P	Laboratory Control Sample results		
NA	Standard Addition Results		
<u>NA</u> <u>P</u>	ICP Serial Dilution Results		
<u>NA</u>	Holding Times Summary Sheet		
NP	ICP Interelement Correction Factors		
P	ICP Linear Ranges		
<u>P</u> P	Raw Data		
	P Samples P Calibration Standards	P Blanks P Spikes	
	P Duplicates P ICP QC (ICS and Serial Dilution)	P LCS	
	P Furnace AA P Mercury Analysis	NA Cyanide Analysis	
NA	Percent Solids Calculations - Solids Only		
<u>P</u>	Sample Prep/Digestion Logs (Form XIII)		
<u>P</u>	Analysis Run Log (Form XIV)	•	
P P P	Chain-of-Custody		
P	Sample Description	·	
<u>P</u>	Case Narrative		
<u>P</u>	Method References		
Y:			

- P = Provided in original data package, as required by the SOW
- R = Provided as Resubmission
- NP = Not provided in original data package or as resubmission
- NR = Not required under the SOW
- NA = Not applicable to this data package or analysis

I. DE	LIV	ERA	BLES
-------	-----	-----	------

All delivera	ıbles	were	present.
--------------	-------	------	----------

Yes __

No_X

Comments:

A Form 11 was not provided. No action is required.

II. HOLDING TIMES AND PRESERVATION CRITERIA

All holding times and preservation criteria were met.

Yes____

No_X

Comments:

According to the sample receipt confirmation form, the sample label for S0400HT4209 reads S0400HT429. No other shipping or receiving problems were noted. Chain-of-custody, summary forms, and raw data were evaluated.

The following table lists the analyses outside holding times, number of days outside holding times, and qualifiers added to the data:

Associated Sample	Days Analyzed Outside , Method Holding Time	Analyte	Qualifiers
S0STKPLB1, S0700FG1Z1, S0400HT4209	4	Mercury	J/UJ
SOSTKPLA1, S0401SP1S1, S01063W121, S0041FC1S1	1		

These samples were collected on August 25 and 28, 2002 but were not received by the laboratory until September 23, 2002.

III. INSTRUMENT CALIBRATIONS: STANDARDS AND BLANKS

Initial instrument calibrations were performed according to method requirements.

Yes X_

No___

Comments:

None.

The instruments were calibrated daily and each time an analysis run was performed.

Yes_X_

No___

Comments:

None.

A CONTRACT

	The instrume	nts were calibrated using one blank and the appropriate number of standards.	
	Yes_X_	No	
	Comments:	The calibration correlation coefficients were greater than 0.995.	
IV.	FORM 1 - S.	AMPLE ANALYSIS RESULTS	
	Sample analy	ses were entered correctly on Form Is.	
	Yes_X_	No	
	Comments:	None.	٠
v.	FORM 2A -	NITIAL AND CONTINUING CALIBRATION VERIFICATION	
	The initial armethod require	d continuing calibration verification standards (ICV and CCV, respectively) rements.	net
	Yes_X_	No	
	Comments:	None.	
	The calibration and 80-120%	verification results were within 90-110% recovery for metals, 85-115% for cyani or mercury.	de,
	Yes_X_	No	
	Comments:	None.	
	The continuing	calibration standards were run at 10% frequency.	
	Yes_X_	No	
	Comments:	None.	
7.	FORM 2B - C	RDL STANDARD FOR ICP AND AA	
	-	Standards (CRI) at two times the CRDL or the IDL (whichever were greater) we beginning and the end of each sample run, or at a minimum of twice per eight hou more frequent.	
	Ves X	No	

VII.

Comments:	None.
GFAA Anal sample run.	ysis: Standards (CRA) at two times CRDL were analyzed at the beginning of each
Yes <u>X</u>	No NA
Comments:	None.
The CRI and	or the CRA were analyzed after the ICV.
Yes_X_	No NA
Comments:	None.
FORM 3 - B	LANKS
The initial and	continuing calibration blanks (ICB and CCB, respectively) met method requirements.
Yes_X_	No
Comments:	None.
The continuin	g calibration blanks were run at 10% frequency.
Yes_X_	No
Comments:	None.
	preparation blank was run at the frequency of one per twenty samples, or per sample (whichever is more frequent), and for each matrix analyzed.
Yes_X_	No
Comments:	None.
All analyzed b	lanks were free of contamination.
Yes	No_X_
Comments:	The preparation blank reported zinc at 0.576 mg/Kg. No action was taken, as the positive results for zinc in all samples were greater than the blank action level.

VIII. FORM 4 - ICP INTERFERENCE CHECK SAMPLE

The ICP interference check sample (ICS) was run twice per eight hour shift and/or at the beginning and end of each sample set analysis sequence (whichever is more frequent).

Yes_X_ No__

Comments: None.

Percent recovery of the analytes in solution ICSAB were within the range of 80-120%.

Yes_X No__

Comments: None.

Sample results for aluminum, calcium, iron, and magnesium were less than the ICSA values.

Yes___ No_X_

Comments: The sample results for iron exceeded the ICSA values in samples S0STKPLA1 and

S0401SP1S1. No action was taken, as the sample results were greater than 5 times

the ICSA results for the ICSA values greater than the IDL.

IX. FORM 5A - MATRIX SPIKE SAMPLE ANALYSIS

A matrix spike sample was analyzed with every twenty or fewer samples of a similar matrix, or one per sample delivery group (whichever is more frequent).

Yes_X No__

Comments: None.

The percent recoveries (%R) were calculated correctly.

% Recovery = $\frac{(SSR - SR)}{SA}$ X 100

SSR = spiked sample result

SR = sample resultSA = spike added

SA = spike added

Yes_X No___

Comments: None.

Spike recoveries were wi	thin 75-125% (a	n exception i	is granted	where the	sample	concentration	is
four times the spike conc	entration).			,			

Yes___ No_X_

Comments:

The following table lists the spike recoveries outside control limits, matrix, samples

affected, and data qualifiers:

Element	Spike Recovery	Matrix	Samples Affected	Qualifiers
Antimony	57.2%	Soil	All samples	J/UJ
Arsenic	66.6%			

X. FORM 5B - POST DIGEST SPIKE RECOVERY

A post-digest spike was performed for those elements that did not meet the specified criteria (i.e., pre-digestion/pre-distillation spike recovery falls outside of control limits and sample result is less than four times the spike amount added, exception: Ag, Hg).

Yes_X No_ NA_

Comments: The post digest spike recovery for antimony and arsenic were within QC limits.

Results are not qualified based on post digest spike data.

XI. FORM 6 - DUPLICATE SAMPLE ANALYSIS

Duplicate sample analysis was performed with every twenty or fewer samples of a similar matrix, or one per sample delivery group (whichever is more frequent).

Yes_X No__

Comments: None.

The RPDs were calculated correctly.

Yes_X_ No__

Comments: None.

•	ncentrations greater that or soil/sediments/tailing		e CRDL, RPDs were wi	thin ±20% (limits of			
Yes	No_X_		·				
Comments:	The following table li and data qualifiers:	sts the RPDs ou	tside control limits, matr	rix, samples affected,			
Element	%RPDs	Matrix	Samples Affected	Qualifiers			
Zinc	65.2%	Soil	All samples	J/UJ			
	The duplicate results for lead and mercury were flagged by the laboratory as exceeding the 20% water criteria at 22.6% and 27.2%, respectively. No action was required, as the soil criteria of 35% was met. For sample concentrations less than five times the CRDL, duplicate analysis results were within the						
	of ± CRDL (two time	S CKDL for so	is).				
Yes_X_	No						
Comments:	None.						
GFAA QC							
Duplicate inject	tions were performed o	on all GFAA sa	mples and the RSD was	within \pm 20%.			
Yes_X_	No NA_	-					
Comments:	All selenium and thall	ium results we	re non-detected and no a	action was required			
Analytical spike	es were performed on a	ill GFAA samp	les and the percent recov	very was 85 - 115%.			
Yes	No_X NA	_	4				

XII.

Data Validation Report

Comments:

The following table lists the analytical spike recoveries outside control limits, samples affected, and data qualifiers:

Element	Samples	%R	Qualifiers
Selenium	S0STKPLB1 S0700FG1Z1	73.7% 63.7%	UJ
	S0400HT4209 S0041FC1S1	57.8% 45.0%	
Thallium	SOSTKPLA1 SO401SP1S1	71.4% 27.3%	
	S0400HT4209 S01063W121 S0041FC1S1	66.8% 56.6% 65.7%	

· 7	Thallium	S0STKPLA1 S0401SP1S1 S0400HT4209 S01063W121	71.4% 27.3% 66.8% 56.6%	
	·····	S0041FC1S1	65.7%	
	MSAs were	e analyzed when i	required and the correlation coe.	fficient was > 0.995.
	Yes	No	NA <u>X</u>	
	Comments	: None.		
ХШ	. FORM 7 -	LABORATORY	Y CONTROL SAMPLE	
		•	e (LCS) was prepared and analyz er sample delivery group (which	ed with every twenty or fewer sample ever is more frequent).
	Yes_X_	No		· ·
	Comments:	None.	·	. •
	All results v	were within contro	ol limits.	•
	Yes_X_	No		
	Comments:	All LCS reco	overies were within the QC limi	ts.
XIV.	FORM 8 - S	STANDARD AD	DITION RESULTS	
	Results from	n graphite furnace	standard additions were entered	on Form VIII as directed in the SOW
	Yes	No	NA_X_	

Comments:

None.

XV. FORM 9 - ICP QC

A serial dilution was performed for ICP analysis with every twenty or fewer samples of a similar matrix, or one per sample delivery group, whichever is more frequent.

Yes_X_

No___

Comments:

None.

The serial dilution was without interference problems as defined by the method.

Yes___

No_X

Comments:

The following serial dilution %Ds were greater than 10% and the original sample

result was at least 50* the IDLs:

Element	% Difference	Samples Affected	Qualifiers
Copper	40.4	All samples	J - detects

XVI. FORM 10 - QUARTERLY INSTRUMENT DETECTION LIMITS (IDL)

IDLs were provided for all elements on the target analyte list.

Yes_X_

No___

Comments:

A Form 10 was provided and the IDLs were the same as the CRDL.

XVII. FORM 11 - INTERELEMENT CORRECTION FACTORS FOR ICP

Interelement corrections for ICP were reported.

Yes

No_X

NA___

Comments:

Interelement correction factors Form 11 was not provided for the ICP metals. No

action was taken.

XVIII. FORM 12 - ICP LINEAR RANGES

ICP linear ranges were reported.

Yes_X_

No

NA

Comments:

A Form 12 was provided, however, the linear ranges were determined more than 3

months prior to sample analysis.

XIX.	LINEAL	RANGE	VERIFICA	ATION A	NALYSIS
------	--------	-------	-----------------	---------	---------

Linear Range Verification Analysis (LRA) was performed and results were within control limits of 5% of the true value.

Yes___

No

NA_X

Comments:

None.

XX. FORM 13 - PREPARATION LOG

Information on the preparation of samples for analysis was reported on Form XIII.

Yes X

No___

Comments:

None.

XXI. FORM 14 - ANALYSIS RUN LOG

A Form XIV with the required information was filled out for each analysis run in the data package.

Yes_X_

No___

Comments:

None.

XXII. Additional Comments or Problems/Resolutions Not Addressed Above

Yes

No_X_

Comments:

None.

INORGANIC DATA QUALITY ASSURANCE REVIEW

Region VIII

DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality. Use of additional qualifiers should be carefully considered. Definitions for all qualifiers used should be provided with each report.

GENERAL QUALIFIERS for use with both INORGANIC and ORGANIC DATA

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported amount is estimated because Quality Control criteria were not met. Element or compound was not detected.
- N J The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- U The material was analyzed for, but was not-detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

ACRONYMS

AA Atomic Absorption

Ag Silver

CCB Continuing Calibration Blank

CCV Continuing Calibration Verification

CFR Code of Federal Regulations
CLP Contract Laboratory Program
CRA CRDL standard required for AA
CRDL Contract Required Detection Limit
CRI CRDL standard required for ICP

CV Cold Vapor

EPA U.S. Environmental Protection Agency
GFAA Graphite Furnace Atomic Absorption

Hg Mercury

ICB Initial Calibration Blank
ICP Inductively Coupled Plasma
ICS Interference Check Sample

ICSA Interference Check Sample (Solution A)
ICSAB Interference Check Sample (Solution AB)

ICV Initial Calibration Verification
IDL Instrument Detection Limit
LCS Laboratory Control Sample

LRA Linear Range Verification Analysis

MSA Method of Standard Additions

PDS Post Digestion Spike

QC Quality Control

RPD Relative Percent Difference

RPM Regional Project Manager

RSD Percent Relative Standard Deviation

SA Spike Added

SAS Special Analytical Services
SDG Sample Delivery Group

SOW Statement of Work

SR Sample Result

SSR Spiked Sample Result
TPO Technical Project Officer

		INORGANIC	1 ANALYSES DATA	SHEET	EPA	SAMPI	E NO.
l					s	31163	3
ab Name: SVL	_ANALYTICAL_	_INC	Contract: _		_	· · · · ·	i
Lab Code: SIL	VER Ca	ase No.:	SAS No.	:	SDG	No.:	103307
 atrix (soil/	water): SOII			Lab Sam	ole ID:	s311	633
Level (low/med	d): LOW_			Date Red	ceived:	09/2	3/02
Solids:	100.	0					
Co	oncentration	Units (ug	/L or mg/kg dr	y weight	: MG/K	G	
	CAS No.	Analyte	Concentration	C Q	М		
	i	.1	i	<u> </u>	_ _		
,		Aluminum_	8500		P_		
	7440-36 - 0				P J		
	7440-38-2		138	·-·-	P_ J		-
	7440-39-3		103		P_		
		Beryllium	·	· — · — — — — — — — — — — — — — — — — —	P_		
	7440-43-9	·	5.0		P_		
	7440-70-2	• —	13700	· — · — — — —	P_		
	7440-47-3	•	8.0		P_{		
•	7440-48-4		4.8		P		
	7440-50-8	Copper	17.2	_ E	P_ 2		
	7439-89-6	Iron	14800	-	P_		
	7439-92-1	Lead	682	- *	P_		
	7439-95-4	Magnesium			P_		
	7439-96-5 7439-97-6	Manganese	649	· • • • • • • • • • • • • • • • • • • •	P		
	1	Mercury Nickel	1.3	- "	CA 2		
		Potassium	7.4 1580	-	P_P		
		Selenium	0.10	ช พ		•	
	7440-22-4	Silver	5.3		-::	,	
		Sodium	77.5		- P		•
	7440-28-0		1.0		F-		
•	7440-62-2		10.4		P	•	
		Zinc	948	*	P_ J		
olor Before:	BROWN	Clarit	y Before:		Textu	re:	MEDIUM
olor After:	YELLOW	Clarit	y After:	<u></u>	Artifa	acts:	
omments: CLIENT_ID: PERCENT_SOL		CICABLE			·····		 .

FORM I - IN

ILM02.1

	1		
INORGANIC	ANALYSES	DATA	SHEET

EPA	SAMPLE	NO.
-----	--------	-----

Lab Name: SVL_ANALYT	ICAL_INC	Contract:	S311634
Lab Code: SILVER	Case No.:	SAS No.:	SDG No.: 103307
Matrix (soil/water):	SOIL_	Lab Sample	e ID: S311634
Level (low/med):	LOW	Date Rece	ived: 09/23/02

% Solids:

100.0

Concentration Units (ug/L or mg/kg dry weight): MG/KG

			_			
CAS No.	Analyte	Concentration	C	Q	M	i - -
7429-90-5	Aluminum	5380	-	<u> </u>	P	!
7440-36-0	Antimony_	558	i –		P	3
7440-38-2	Arsenic	999	i —	M	\mathbf{P}^{-}	3
7440-39-3	Barium	75.3	i —	i	P	į
7440-41-7	Beryllium	0.20	<u>ี้ บั</u>		P	į
7440-43-9		30.9	İ		P	į
7440-70-2	Calcium_	4360	<u> _ </u>	i	P_	İ
7440-47-3	Chromium	4.6			P_	} .
7440-48-4	Cobalt	4.6	[P_	
7440-50-8	Copper	44.4	<u> </u>	E	P	¦ J
7439-89-6	Iron	44100	_		P_	
¦7439-92-1	Lead	5700	_	*	P_	
7439-95-4	Magnesium	3480	_		P _	ŀ
¦7439-96-5	Manganese	2410	_	ļ	P_	
7439-97-6	Mercury	7.4	_		CV	ነ ፓ
¦7440-02-0	Nickel	4.8			P_	l
7440-09-7	Potassium	994			P_]
7782-49-2	Selenium_	1.0	Ū		F_	i
7440-22-4	Silver	48.7	_		P_	! !
	Sodium	68.0			P _	l I
7440-28-0	Thallium_	1.0	<u></u>	W	F _	เนร
7440-62-2	Vanadium_	6.6			P _	<u> </u>
7440-66-6	Zinc	5370		*	P_	3
 	l l					

oror	Belore:	BROWN	Clarity	Beiore		rexture:	MEDIOM
olor	After:	YELLOW	Clarity	After:		Artifacts:	
	ENT_ID:	SOSTKPLA1 IDS NOT APPLICA	T F		·		··

FORM I - IN

ILMO2.1

U.S. EPA - CLP

		INORGANIC	ANALYSES DATA :	SHEET	EPA SAMPI	
					S31163	5
ab Name: SVL_	ANALYTICAL_	INC	Contract: _	 	. İ	
ab Code: SILV	ER Ca	se No.:	SAS No.	·	SDG No.:	103307
atrix (soil/w	ater): SOII	<u>-</u>		Lab Samp	le ID: S311	.635
evel (low/med): LOW_	_		Date Rec	eived: 09/2	3/02
Solids:	100.	0				
Co	ncentration	Units (ug	/L or mg/kg dry	y weight)	: MG/KG	٠.
	CAS No.	Analyte	Concentration	C Q	М	
•		35		-		
	7429-90-5		7560			
	7440-36-0	Antimony_	15.9		P_ J	
	7440-38-2	Arsenic	50.6		P_ J	
	7440-39-3		69.3	_	P P	
	7440-41-7					
	7440-43-9		6.6	_	P_	
	7440-70-2		13900	_	P	
	7440-47-3	· —	7.6	_	P	
•	7440-48-4	Cobalt	5.2	_	P	
	7440-50-8	Copper	16.7	E	P_ J	1
	7439-89-6	Iron	13800		P_ .	
	7439-92-1	Lead	276	*	P	•
	7439-95-4	Magnesium	8030	_	P_	
	7439-96-5	Manganese	491	-	P	
	7439-97-6	Mercury	0.52	*	cv J	
	7440-02-0	Nickel	7.6	-	P_	
		Potassium	1880	-	P	
	7782-49-2	Selenium	0.10	U W	F UJ	
i	7440-22-4	Silver	3.0	~ "	P	•
i	7440-23-5		54.5	-	p-	
	7440-28-0		1.0	77	F	
!	7440-62-2		i0	٠ <u> </u>	P_	
. i i	7440-66-6		955		P 3	
į	/440-00-0	21110			110	
ļ				_		
lor Before:	BROWN	Clarit	y Before:		Texture:	MEDIU
lor After:	YELLOW	Clarit	y After:		Artifacts:	
mments: CLIENT_ID: PERCENT_SOLI		ICABLE				

FORM I - IN

ILM02.1

1

EPA	SAMPLE	NO.
-----	--------	-----

		INONGAMIC	ANALISES DATA	Our	2121	. –		
ab Name: SVL	ANALYTICAL	INC.	Contract:				s3116	36
_	_					'		
ab Code: SILV	VER Ca	ase No.:	SAS No.	• _		S	DG No.:	103307
atrix (soil/v	water): SOII	_		La	ab Sam	ple	ID: S31	1636
evel (low/med	d): LOW_	_		Da	ite Re	ceiv	ed: 09/	23/02
Solids:	100.	0						
Co	oncentration	Units (ug	/L or mg/kg dr	у У М	eight): M	G/KG	
	CAS No.	Analyte	Concentration	С	Q	M		
	7429-90-5	Aluminum	1490	-		- -		
	7440-36-0	Antimony_	2560		M		j	
	7440-38-2	Arsenic	3050	i-i	$-^{\mathit{M}}$	- P-	İŠ	
	7440-39-3	Barium	21.8	-		- P_		
	7440-41-7	Beryllium	0.20	֓֞֓֓֓֓֓֓֓֓֓֓֓֟֟ ֓		_ P_	İ	
	7440-43-9	Cadmium	72.4			P	1	
•	7440-70-2	Calcium	974	i – i		- P_	Ì	
	7440-47-3	Chromium	2.8	171		$- \mid \mathbf{P}_{-}^{-}$	1	
,	7440-48-4	Cobalt	2.6			P_ P_	į	
	7440-50-8	Copper	91.4	-	E	- P-	1 3	
	7439-89-6	Iron —	95100	i-i		P	İ	
	7439-92-1	Lead	15100	<u> </u> –	Ŷ	- P	į	•
		Magnesium	1040	i — i		P_	İ	
		Manganese	3140	<u> </u> -		P		
		Mercury	18.1	— ·	*	CV	3	
		Nickel	4.0	- ·		P		
	•	Potassium	432	-		- P		
	•	Selenium	1.0	77		_ ਸ਼ਾ <u></u>		•
		Silver	160	"		P_	Ì	
		Sodium	51.9	!− ¦·		- 5-	!	
	7440-28-0		1.0	77	E	╌╎╬╌╴	10.5	
	7440-62-2		1.4	~	~	- p-	นร	
)	Zinc	11600		\$	- p-	3	
		———	11000	- · - ·	—¨—	-		•
lor Before:	BROWN	'' Clarit	y Before:	· · ·		Te:	ı xture:	MEDIU
lor After:	YELLOW	Clarit	y After:			Ar	tifacts	B
mments: CLIENT_ID: PERCENT_SOL:		LICABLE .						

FORM I - IN

ILM02.1

10.08.02

U.S. EPA - CLP

		INORGANIC	ANALYSES DATA S	SHEET		
ab Name: SVL	ANALYTICAL	inc.	Contract:		S3116	37
·					_ ' 	
ab Code: SIL	VER C	ase No.:	SAS No.	:	SDG No.:	103307
atrix (soil/	water): SOI	i_		Lab Samp	ole ID: S31	1637
evel (low/me	d): LOW_	_		Date Rec	eived: 09/	23/02
Solids:	100	. 0			•	
C	oncentration	units (ug	/L or mg/kg dry	weight)	: MG/KG	
	CAS No.	Analyte	Concentration	C Q	М	
	7429-90-5	Aluminum	7510		P	
	7440-36-0	Antimony	3.4			٠
	7440-38-2	Arsenic	8.1	N	P J	
	7440-38-2		125		P	
	7440-41-7		0.34		P	
	7440-43-9		0.31	-	· P	•
	7440-70-2		14300	-	P	
·	7440-47-3		7.9	-	P	
	7440-48-4	Cobalt	5.0	-		
	7440-50-8	• —	14.1	- -E	P J	
	7439-89-6	Copper	12100	-		
	7439-89-6	Lead	25.1		P_ P	
	7439-95-4	Magnesium	7050	-¦"	P	
	7439-95-4	Manganese	261	-	P	
	7439-97-6	Mercury	0.08	-	ˈcv J	
	7440-02-0	Nickel	7.2	-	P	
		Potassium	1700		P	
		Selenium	0.10	<u>u</u> <u>w</u>	F UJ	
•	7440-22-4	Silver	0.58	~ "		
	7440-23-5		57.1	-	· P	
		Thallium		Ū W	F UJ	
		Vanadium	10.3	""		
	7440-66-6	Zinc	31.2	_	P_ J	
				_		
lor Before:	BROWN	Clarit	y Before:	_	Texture:	MEDIUM
or After:	YELLOW	Clarit	y After:		Artifacts	
	_S0400HT4209 IDS_NOT_APPI					

FORM I - IN

ILM02.1

U.S. EPA - CLP

INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

ab Name: SVL_ANALYT	ICAL_INC	Contract:	S311638
ab Code: SILVER	Case No.:	SAS No.:	SDG No.: 103307
atrix (soil/water):	SOIL_	Lab Sample	e ID: S311638
evel (low/med):	LOW	Date Rece	ived: 09/23/02
Solids:	100.0	·	

Concentration Units (ug/L or mg/kg dry weight): MG/KG

		,		_			
	CAS No.	Analyte	Concentration	c	Q	M	
	7429-90-5	Aluminum	10000	-		P	!
	7440-36-0	Antimony -	13.6	-	N	P	3
	7440-38-2	Arsenic	28.9	-	M	$_{ m P}^{-}$	3
	7440-39-3	Barium	100	-		P	
	7440-41-7	Beryllium	0.28	<u> </u>		P_	į
	7440-43-9	Cadmium	1.5	-		P	
	7440-70-2	Calcium	21800	i —	·	\mathbf{p}_{-}	Ì
	7440-47-3	Chromium	6.1	i —	į ———	P	i'
	7440-48-4	Cobalt	5.9	i –		P	į
	7440-50-8	Copper	16.7	_	E	P_	3
	7439-89-6	Iron	14400	_		P_	
	7439-92-1	Lead	168	_	Ŕ	P_	
	7439-95-4	Magnesium	3380			P_	j 1 .
	7439-96-5	Manganese	446			P_	
	7439-97-6	Mercury_	0.15	-	*	CV	3
	7440-02-0	Nickel	8.2	_	i — —	P _	
	7440-09-7	Potassium	1660	_		P_	i I
	7782-49-2	Selenium	1.0	ਹ]	F _	}
	7440-22-4	Silver	1.3			P_{-}	
1	7440-23-5	Sodium	95.9			P_	
	7440-28-0	Thallium	0.10	ਹ	W	F_	uJ
1	7440-62-2	Vanadium	13.0	_		P _	l
j	7440-66-6	Zinc	246		*	P_	J
ĺ							
ĺ				_			
				_			

color Before:	BROWN	Clarity	Before		Texture:	MEDIUM
Color After:	YELLOW	Clarity	After:		Artifacts:	
CLIENT_ID:		D.T. 73				·
PERCENT_SOLI	DS_NOT_APPLICAL	BTE •				

ILM02.1

AB 10-08-02

J.S. EPA -	CLP	
------------	-----	--

		INORGANIC	1 ANALYSES DATA	SHEET	EPA SAMPLE	NO.
ab Name: SVL	_ANALYTICAL_	_INC	Contract: _		s311639)
ab Code: SIL	VER Ca	ase No.:	SAS No.	:	SDG No.: 1	103307
atrix (soil/	water): SOII	<u></u>		Lab Samp	le ID: S3116	39
evel (low/med	d): LOW			Date Rec	eived: 09/23	3/02
Solids:	100.				•	
			/L or mg/kg dr	y weight)	: MG/KG	
	CAS No.	Analyte	Concentration	c Q	М	
	7429-90-5	Aluminum	12400	-	P	
•	7440-36-0	Antimony_	1.2		P_ J	
	7440-38-2	Arsenic	4.6	N_	P_ J	
	7440-39-3	Barium	137		!p !	
	7440-41-7	Beryllium			P_	
,	7440-43-9	Cadmium_	0.92	[<u></u> [[P_	
	7440-70-2	Calcium_	12400	_	P	
	7440-47-3	Chromium_	9.8	-	P	
	7440-48-4	Cobalt	5.3	- - 	P	
	7440-50-8	Copper	44.6		$P \supset J$	
	7439-89-6 7439-83-1	Iron	17200	i-i	P	
	7439-92-1 7439-95-4	Lead	65.8	- 	P P	
	7439-96-5	Magnesium Manganese	432	-	P	
	7439-90-5	Mercury	0.14	-	cv 2	
	7440-02-0	Nickel -	8.5	-	D	•
		Potassium	4580		P	
	7782-49-2	Selenium	0.10		F UJ	
		Silver	0.76		P	
	7440-23-5	Sodium	80.1		P_	
	7440-28-0	Thallium_	0.10	U W	F_ uJ	
	7440-62-2	Vanadium_	10.6		P	
	7440-66-6	Zinc	194	*	P_ J	
or Before:	BROWN	Clarit	y Before:		Texture:	MEDIUM
or After:	YELLOW	Clarit	y After:		Artifacts:	
ments: CLIENT_ID: PERCENT_SOL		LICABLE				

10.0802

ILM02.1

						BATCH:	<u> </u>	3307	_
List all analytes which do n	ot meet	holding time cri	iteria		280033				-
List dir driarytes willor es ir	1	List Pre		*Metals	Hg CVAA		T	No. of Days	T
Sample ID	Mat		a l Date	Analysis/	Analysis	*CN Apartysis	Analysis	Past Holding	Action
		(A, B, C	Collected	Date/s	Date 9	Date	Date/s	Time	
S311633/50512	Son		8.25-02	09.25.02	09.2602			Ha = Part	-5
34/50511	\top	1	8.28	9.2602.57		(32)		14-1	1
35/50 700 35/ F6121	17		8.25					Ha = & Part	
36/50151	1-1		8.28				,	137	1/3
37/50400 1	7	#	8.25					Ha & Past	J
38/50043	+-		828					1 1	
39/18751	+-+-	- -	8-2802	1-1				1	7
3 1/ FC 151	╫┺	4	102000	 	1 1	 		All	-j"
	┼──		 	 	<u> </u>			All Ha	<u> </u>
								 	
	 	- 	 	<u> </u>		<u></u>			
	 -		 						
				 				ļ	
	 _ _	<u> </u>	++-					 	
	╨┺	Sote: 5	omple Ro	ceipal	P3 111			 	
	ļ <u>.</u>		 _	· · · · · ·					
<u></u>	<u> </u> S	50400HT4	209 -	2 Sample	label =	S0400HT4.	29	· · · · · · · · · · · · · · · · · · ·	
	ļ		<u> </u>						
	ļ								
									,
	<u> </u>					<u> </u>			
	ļ		ļ						
	<u> </u>		ļ						
	<u> </u>								
	<u> </u>		<u>l</u>	<u> </u>	i			1	
COMMENTS / TAL	6010E	S-ICP = 4	1/25.02	1g-2100m	<u> </u>	7471-1	1g - CV -	9/26.02	
	7060	<u>As</u>					029	7165	
	7421	<u>РЬ</u>	<u> </u>	<u> </u>				THE WOOD	
	7740	<u>Se</u>	<u> </u>	<u> </u>					·
	7841	7(J					
 If holding times are exceeded, If holding times are grossly exceeded. 	ceeded (>	=2"holding time),	detected results	are					
estimated (J), and non-detected n	esults are	rejected (R).				٨	Ω		
•				,	Validated by:	/- my	D ALLO	W),	Date: 0:08:02
Preservatives:				-			1) ALLO		
A. Preserved w/HNO3 and cooled	d to 4°C			1	Review By:				Date:
B. Cooled to 4°C C. No Preservative				-		المركك	1 }		
G. IND FIGSELFAUTE									
ANALYTE	HOLDING	3 TIME	PRESERVATIV	Æ	· · · · · · · · · · · · · · · · · · ·				
Matala	180 days		pH < 2 w/HNO3	A Dec C		SOIL 4 Deg. C			
Metals Mercury	180 days 28 days		pH < 2 w/HNO3			4 Deg. C		•	
, •									

pH > 12 w/NaOH, 4 Deg. C

4 Deg. C

Holding Time = Analysis Date - Collection Date

Cyanide

14 days

BATCH:	103307	

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCA	TRUE	Found	% R	Action	Samples Affected
						
						All 4/10 90.1109
**				-	 	/ W / 10 110 / /
				 ·		
		1				
					1	
				<u> </u>	<u> </u>	
						
						· · · · · · · · · · · · · · · · · · ·
····						
un after CRI ev	very 10 samples	and at end of	sequences? (CL	P only	'es No	
					ch sample run (CL	_P only)? Yes No
MENTS					····································	
	 					

ICV/CCV Actions:

PERCENT RECOVERY

<75% 75-89% 90-110%

111-125%

>125%

Detected results
Non-detected Results

R R UJ J

V

J

R V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

Inorg98.xls

•		BATCH:	103307	

List all AA analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and continuing calibration verification (CCV).

Analyte	CCV	TRUE	Found	% R	Action	Samples Affected
						Se + TL
						All 4/1 90-110%
···						
	† <u>-</u>					
	 	_				
	 					
		_				
			-		 .	
	 					
	 	··}				
	 				- '	
	 				 	
	 					-
 -	 					
						
						<u>.</u>
				·		<u> </u>
	ect number of s			alibrate the in		(Yes) No
the initial ca	libration correla	tion coefficient	> 0.9957	Yes	1.00	0:76 /1.000.Se
f no, list affe	cted analytes a	nd samples:				· · · · · · · · · · · · · · · · · · ·
as a CRDL o	heck sample (CRA) analyzed	at the beginning	ng of each sa	mple run? (CL	P only) Yes No
CV run after C	CRA, every ten	samples and a	t end of seque	nce? (Yes	No
MENTS						

Actions:

ICV/CCV Actions:

PERCENT RECOVERY

<75% 75-89% 90-110% 111-125% >125%

Detected results R J V J R

Non-detected Results R UJ V V V

- 1. If three standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

IIC. INORGANIC ANALYSIS WORKSHEET -- Hg CALIBRATIONS

	BATCH:	<u> </u>	<u>103507</u>
·			

List all mercury results that did not meet the percent recovery criteria for the ICV and/or CCV standard.

ICV CCV TRUE Found % R Action Samples Affected

All M/in 80 120.

١.	Was a CRDL check sample (CRA) analyzed at the begin	nning of eac	h sample run	? (CLP only) Yes	No	
	If no, list affected analytes and samples:			3	_	
2.	Is the initial calibration correlation coefficient > 0.995?	Yes	No	Ha = 0.9995		
	were the correct number of standards and blanks used	to calibrate i	ine instrumer	it? Yes No		

Was a CRDL check sample (CRA) analyzed at the beginning of each sample run? (CLP only) Yes No
 CCV run after CRA, every ten samples and at end of sequence? Yes No
 COMMENTS

Actions:

	PERCENT RECOVERY					
	<65%	65-79%	80-120%	121-135%	>135%	
Detected results	R	J	V	J	, R	
Non-detected Results	R	บม	V	V	. V	

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

III. INORGANIC ANALYSIS WORKSHEET -- BLANKS

	MATRIX:_	9	Soil			BATCH:	1035	307
he highest posi	tive AND nega	ative blank resul	t >= DL below	. Use one work	sheet for soil	matrix and anoth	er for water	matrix.
Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action		Samples	Affected
~~~	PB	500/2	- K7/	200	A.I	All >51		
Zn	10		0.576	2.00 7/5	None	HII 737		
	<del> </del>	= 0.5%	above IDL				<del>/-</del> -	<del></del>
	<del>                                     </del>	j					/	·
							<del></del> -	
	'		,					
·-· ·- <u>·</u>				•	<del></del> -			
	ļ				·····			
	<u> </u>					ļ		<del></del>
								·
	<u> </u>							
	ļ			<del></del>		<u> </u>		· · · · · · · · · · · · · · · · · · ·
<del> </del>	ļ				·	· · ·	· · · —	
		•						<del></del>
					<del></del> .			
		<del></del>					·····	
								<del></del>
							_	
						<u> </u>		
Verify that the					B is < CRDL	•		
		00 ml	19/2-1	5 - m/kg				<del></del>
ep blank per ma								····
ep blank per ba						· · · ·		
alyzed immedia			<del></del> -	<del></del>	_ <del>,</del> .			
nalyzed after ea		70d2 # a = := :	ع الا منتخاص مامن	anliantia	inet			<u></u> .
quipment/rinsate	e planks analy	zea? it so, inc!	ude above if a	pplicable to pro	ject.	<u> </u>	-	
MENTS					<del> </del>	·		<del></del>
		· · · · · · · · · · · · · · · · · · ·						

#### Actions:

- 1 If |Blank| < IDL, no action is taken.
- 2 If Blank > = IDL, then all sample results > = IDL and < 5"Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5° |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

IVA.	INORGANIC A	NALYSIS WORKSHEE	ET - ICP INTER	FERENCE CH	ECK SAMPLE	
				BATCH:	1033	07
IOTE: The sample res	sults can be accep	oted without qualification,	if the sample conc	_		
qual to the concentrat					•	
vamine the sample re	sults in uo/L and i	ist any Al, Ca, Fe or Mg re	esults that are orea	iter than the ICS	A values	
			<u> </u>	T		
Sample ID	Analyte	Sample Result	ICS Value		Comments	
5 9 11 / 0 /A	Fe	(FAW)	(rau)	>5e	<u> </u>	<del></del>
5311634	1	188,073 440.42	188.073	100	. <del>"</del>	<del></del>
5311636		964.6	<u>J</u>	<del></del>		
		<del></del>		<del>                                       </del>	·	
		<del>-</del>	<del>-</del>	<del> </del>	<del> </del>	
	<del> </del>	<del> </del>	<del> </del>			
		<del>                                     </del>		ļ	·	<u> </u>
				<u> </u>		·
		<u> </u>				
				1 .		
			<del></del>	<del></del>	· · · · · · · · · · · · · · · · · · ·	
t anu analutas in the l	ICS AP colution th	nat did not meet the criteri	190 1209/ B			•
Analyte	% R	Action	a 01 60-120 % K.	Samr	les Affected	<del></del>
Allayte	7011	1		5-120%	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·
		+		12070 17		<del></del>
		<del> </del>	<del></del>	<del></del>	· · ·	•
			·			· · · · · · · · · · · · · · · · · · ·
		<del> </del>	<del></del>	<del></del>		· · · · · · · · · · · · · · · · · · ·
		<del> </del>	<del></del>			
					<del></del>	·······
						·
			· · · · · · · · · · · · · · · · · · ·			
						<del></del>
					7	
Protocol Only	<del></del>	<u> </u>				
re Interference Check		he beginning and end of e	each sample analy	sis run, or a ṁin	imum of twice per 8	3-hour shift (whicheve
nore frequent)?	Yes	No	·	- · · · · · · · · · · · · · · · · · · ·	<u> </u>	· · · · · · · · · · · · · · · · · · ·
MMENTS	<del></del>	<del></del>	<del></del>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<del></del>
			<del></del>		<del></del>	· · · · · · · · · · · · · · · · · · ·
						·
	·					
ons:				1		
	ı	PERCENT RECOVE	RY			
	•	<50%	50-79%	80-120%	>120%	
ected results		-30% R	J	V	J	
adetected results		R	U.I	v	v	

# IVB. INORGANIC ANALYSIS WORKSHEET - ICP INTERFERENCE CHECK SAMPLE

BATCH:	103307
DATUN.	10 000 /

Note: For the CLP protocol only, report the concentration of any analytes detected in the ICSA solution > |IDL | that should not be present (apply only to samples with elements identified at concentrations above the ICSA on the previous page).

Analyte	ICSA Result	Action	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample/ Result	Sample Result
` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	Ish TOL			5311634	5331636			
Sb	(-20.) / 5			>5 ^	>5 ^			
As	(-40) 10			>54	25^			
Be Be	1 2	None 4 IDL			-			
Be	1 2	1 1		-				
Cd           Cr           Co	8 2			>51	>51			
Cr	(-3)	None (IDL						
Co	3 6	] ]			~			
Cu	2 3							
Cu Pb	2 <u>\$</u> (4) <u>\$</u>	1 1						
Mo	7 2			>5^	>54			
N:	(-9) 10	None < IDL		1		_		
K	94 500	J			f			
Ag	5 5			>5×	75^			
Ag Na	66 500	None CIDL						
V	(-2) 5	1 1		1	{		•	
Zn	(-2) 5	1 1			ļ			
<del></del>	<del>                                     </del>	<del></del>				~		<del>                                     </del>

#### Actions:

If the ICSA value > the positive IDL:

- 1. For non-detected results, no action is taken.
- 2. Estimate (J) all detected results < = 5*ICSA.

If the ICSA value < -IDL:

- 1. Estimate (J) detected results < = 5* |ICSA|.
- 2. Estimate (UJ) non-detected results.

V.	INORGANIC	<b>ANALYSIS</b>	WORKSHEET -	PRE-DIGESTION N	MATRIX SPIKE

MATRIX:	Sot-7CH Sol	BATCH:	103307	

List all parameters that do not meet the percent recovery criteria. Note: The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K, Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples.

Sample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
53116335	Sb	98	40.8	100	57.2	JUJ	-AI)
	As	204	138	1	66.6	3703	All
						<u> </u>	
					<del></del>	<del> </del>	
	Post	-dinest		·			
		Sb	= 91.3 /				
		As	= 89.91				
							<u> </u>
						<del> </del>	
					٠,		
						<u> </u>	· · · · · · · · · · · · · · · · · · ·
						<del> </del>	
						<u> </u>	
Was a pre-		ix spike prepa No	ared at the req	uired frequency	of once eve	ry 20 samples	s, or every SDG (whichever is
igestion matr	x spike recove	ery criteria?	(Yes)	P elements, ex No NA			eet the pre-
	ix spike prepa		different sampl		Yes	No	
OMMENTS	Ha I	na Fe, Pb	Zn ) SM	pie conc	dqe,ps	e conc - l	Vo Action
	0	<del></del>	7				

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

PERCENT RECOVERY

	•			
	< 30%	30-74%	(75-125%)	> 1259
Detected results	J	J	V	J
Non-detected Results	R	O.I	V	V

**Note** 

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

		mell			1.		
Sample ID	Analyte	Sample Result	Dup. Results	RPD	L:fference ³	Action	Samples Affected
List all parame	ters that do no			001	<del></del>	BAT	гсн: <u>103307</u>
			_	. 1			

Oumpid is		Result			E.iiciciioc	<del> </del>	<u> </u>
		myl					
5311633 M5D	<u> Pb</u>	668	838	226	>5'CRDL	None	>5=CROL - Lab use water 20.
m5D	Pb Hg	1.19	0.91	226 27.Z	4 _	1	1 but 1/10 35%-Soli
							>50 RDL - Lab use water 20 L but w/m 35%-Soli No Adian
	Zn	2021	1027	65.7		(J) -	=All sample - Zn
	IDL 3	5.0		<u>"                                    </u>			
					·		
						1	
			1				
			•				<del></del>
				`			
							-
MMENTS	····					116	he: TDL = CRDL's

Actions:

#### 1. AQUEOUS

If both sample values > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

#### 2. SOLIE

If both sample value > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result| Include outliers for field duplicates (if applicable)

<u>Note</u>

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

Inorg98.xls

# VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

		MATRIX:	5001	7CLP	_	BATCH:_	10.	<u>3307</u>	
List all parameters	s that do not r	meet the percent	recovery criteria						
LCS ID	Analyte	True Value	Found Value	% R	Action		Samples A	ffected	
					<del> </del>				
						A 1)	W/in crite	ia	
		<del> </del>					7111 61110	•••	<u>-</u>
	·····.				<del> </del>	Who	ما الماده	# Oo	95.120
<del></del>		<del>                                     </del>			<del>                                     </del>	<del>                                     </del>	chimil bilos	- 49 Wast	1 100
+						<del></del>			
<del></del>		<del></del>			<del> </del>	<del>                                     </del>		·	
		<del> </del>		<u></u>		<del></del>	<del></del>	<del>_</del>	
					<u> </u>	<del></del>		-	
		<u> </u>						<del>,</del>	
						<u> </u>			
				· <del></del>		<u> </u>			
٠.					<u> </u>	<u> </u>			
	***************************************								
							······································		
1		-			<u> </u>	<del>                                     </del>			
<del></del>						<del> </del>		<del>_</del>	
<del>-</del>			<del></del>			<del>                                     </del>	·		
						<del>                                     </del>	<del></del>	<del>.</del>	
		LL	L			<del>ــــــــــــــــــــــــــــــــــــ</del>	<del></del>		
lote:					<del></del>	<del> </del>			
CS with the same	matrix as sar	mples must be pr	epared for each	SDG.					
OMMENTS							<u></u>		
	- · · · · · · · · · · · · · · · · · · ·			- <del></del>					
			· · · · · · · · · · · · · · · · · · ·	<u></u>	<u>.</u>				
			··· ·· · · · · · · · · · · · · · · · ·	· .			·		
							_		
ctions:									
xception: Antimor	ny and silver i	nave no control li	mits. An aqueo	us LCS is not r	required for CN	and mercury	•		
				PERCENT	RECOVERY			,	
AQUEOUS			<50%	50-79%	80-120%	>120%		•	
etected results on-detected result	le.		R R	N) J	V V	A 1			
on-detected result	is.		•	00	•	•			
SOLID LCS									
ecoveries stipulate	ed by EMSL						· .	<u>.</u>	-
			BELOW CONTROL	ı	CONTROL		ABOV CONTR		
			LIMITS	- 1	LIMITS	·	LIMIT		
etected results			J	(	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		J		
on-detected result	S		UJ	·	V		<b>, V</b>		
					•			Inora9	a vic

#### VIIIA. INORGANIC ANALYSIS WORKSHEET -- ANALYTICAL SPIKE ANALYSIS

BATCH:	103307	

List all samples	whose analytic	al spike recovery	did not meet	the 85-115% re	covery criteria.
			Sniked		

Analyte	Sample ID	Sample Result	Spiked Sample Result	True Spike Value	% R	Action	Comment
Se	531633-	SOTKBLB1			73.7-	Cu)	
	5311634x				36.6	see RR	
		5080 F6121			63.7	(tt)	
	686x				53	- PR	·
		50400 VT4209			578	(UI)	
	6387	· — I			26.2	RR	
1	639 -	SOUIFC IST			45.0	W UI	
Se	531163H × 10						
	36.0	/					
-1-	1-30-0						·
r1	5311653		-		3.6		
	34				28	metetun.	
	35				37.9	SEE TEUNS	
	36				34		·
	37	30400HT 42011				иъ	
		501063W121	<del></del>	· <del></del> _	668 546	43	·
	30 -	SOUTECIS!	<del></del>		65.7	<del>us</del>	
	2				<i>8</i> 0.7		
	639 +10	- SOST K PUNI			71.4	เม	
	63510				7/-	w	<del> </del>
	1 1	SO40IS PIST			27.3		
	636767	-504013 7 104			2/~	tu	
						<del></del>	<del></del>
							<del></del>
		ocol: One point					Yes No
pike Recov	ery for SW-846:	One analytical s		41	or matrix, w	hichever is more free	quent? Yes No
MENTS		A]]_	Se · 7	7/ resu	<u> </u>	-	
				·- <u>-</u>			

If the sample result is <50% of the spike result, or the sample result is >50% of the spike result* and the percent recovery is <40% or between 80-115%, the following apply.

	FERCENT RECOVERT							
Actions:	10%	10-84%	85-115%	>115%				
Detected results	J	J	V	J				
Non-detected results	R	บJ	V	V				
*Spike result = [spiked sample result - s	ample result]							

#### VIIIB. INORGANIC ANALYSIS WORKSHEET -- FURNACE AA ANALYSIS

BATCH: 103307
---------------

If the sample result is > = 50% of the spike result and the percent recovery was between 40-84% or > 115%, then MSA must be performed.

List all samples for which an MSA analysis was required but not performed, or MSA results were outside control limits.

Analyte	Sample ID	1st Corr. Coeff.	2nd Corr. Coeff.	Action	Comments
		! 			NA

#### Actions:

- 1. Estimate (J/UJ) if an MSA was required and not performed.
- 2. If the correlation coefficient was <0.995, the MSA should be performed a second time. If a reanalysis was not performed, or the reanalysis correlation coefficient was <0.995, or result from the highest correlation coefficient was not reported, then estimate (J/UJ) all sample results.

List all sample > CRDL whose duplicate injections did not agree within 20% RSD or CV, or samples in which duplicate injections were not performed.

l	Analyte	Sample ID	Sample Result	Duplicate Result	% RSD or CV	CRDL	Action	Comment
	5311633 -	7			716.3		None	- Somple result LA
ļ					ļl			'.d
ŀ				<del></del>				
l						i		
ŀ				<del>                                     </del>				·
ŀ		_		<del></del> .				
ľ								
_						·		
					<u> </u>			
L								
_								
7	Snike result =	spiked sample	result - sam	ole resulti	Alaso · All	~ <del>-</del> #1	7,	U = No Adian.

Actions

- 1. Estimate (J) detected results greater than the CRDL if duplicate injections are outside 20% RSD.
- 2. Estimate (J) all sample results if duplicate injections were not performed.

NOTE: Three separate spiked sample concentration levels, in addition to the unspiked sample must be analyzed for each MSA:

#### IX. INORGANIC ANALYSIS WORKSHEET -- 1CP SERIAL DILUTION ANALYSIS

	MATRIX:		S01)	<u> </u>		BAT	гсн: <i>1</i>	03307	
Serial dilution o	riteria only app	olies if the origin		ult is at least 50°		10%	<del>,</del>		
Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D	Action	\$	Samples Affected	
5316336					4642.				
Cn	3	150	171.6	241.0	4642 J -	<del>-</del> 2/5).	-> All Cu	- /	1
N:	10	500	74	222	202.	None	<50 ·21)		
									· · · · · ·
								· · · · · · · · · · · · · · · · · · ·	
		•		<del> </del>					
								<del></del>	
			<del></del>						
			·						
NDUCTIVELY	COURLED BL	ASMA SERIAL	DILLITION AN	IAI YSIS:				<del></del>	
	were performe	d for each matr		of the diluted san	nple analysis	agreed wimin	<del></del>		<del></del>
Serial dilutions	were not perfor	med for the fol			· · · · · · · · · · · · · · · · · · ·				
COMMENTS									
					·				<del></del>
					<del>.</del>				
					<del></del>	<del></del>			
Actions: Estimate (J) del	tected results it	f %D is > 10%.						-	

#### **NOTES**

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

## X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH:	103307	

Describe any raw data anomalies (i.e., baseline shifts, no	egative absorbances, tra	anscription or calculat	ion errors, legibility. etc	C
				-
	· · · · · · · · · · · · · · · · · · ·	<del></del>		<del></del> -
			· · · · · · · · · · · · · · · · · · ·	
	•			
	·			
List results that fall outside the linear range of the ICP inswere not reanalyzed.	strument or the calibrate	ed range of the AA or	Cyanide instrument, ar	nd
<u> </u>			·	·
	· · · · · · · · · · · · · · · · · · ·			
	<del></del>		<del></del>	<u> </u>
	and the Above to			
3. Were ICP linear ranges obtained within 3 months of, and	3/6.02	analyses? Yes		NA
4. Were ICP interelement corrections obtained within 12 mo				o (NA)
No Form 11's	maio oil and biocoring	<u> </u>		
5. Were instrument detection limits present, found to be less	s than or equal to the CI	RDL, and obtained wit	thin 3 months of, and	
preceding, the sample analyses? Yes	(No)	NA OR/	06/02 Anary Z	925-02
			21/02	
5. Were all sample results reported down to the IDL if running	ng CLP protocol?	(Yes)	No	NA NA
1 Mary 11 and 12 and 14 and 15 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16 and 16	SNA DAS	Vaa	No.	
<ol> <li>Were all sample results reported down to MDL if running</li> </ol>	Syv-846 methods?	Yes	No	(NA)
. Were sample weights, volumes, percent solids, and dilution	ons used correctly when	reporting the results	? Yes	No
591694 = ×10 Fe	/ 531434		/5311633	=10.74
5311636 = 10 Fe, Zn			7 39	-102-75
COMMENTS	36	7	35	
		5.31634 =	= ×10 Ha	
TCP 1g → 100ml			= 20 I	
Ha = 060 -7/000l				
(ercent LCS : 0.29 > 100 ml)				
7				



560 GOLDEN RIDGE ROAD, SUITE 130, GOLDEN, CO 80401

PHONE: (303) 763-7188 FAX: (303) 763-4896

## TECHLAW INC.

September 30, 2002

Mr. Kent Alexander URS Operating Services 1099 18th Street, Suite 710 Denver, CO 80202

RE: Transmittal of Data Validation Report

Superior Waste Rock TDD No. 0208-0002 Report No. 102970

Dear Mr. Alexander:

Please find enclosed one validation report for TDD No. 0208-0002 for the Superior Waste Rock project. This report is for the validation of TCLP metals and mercury analyses.

If you have any questions regarding the enclosed report, please contact me at (303) 763-7188.

Yours sincerely, TECHLAW, INC.

Lisa Tyson Staff Consultant

enclosure IF: 01027-102



### REGION VIII DATA VALIDATION REPORT INORGANIC

TDD No.	Site 1	Name	Operable Unit
0208-0002	Superior Waste Ro	ock	
RPM/OSC Name			
Tien Nguyen			
Contractor Laboratory	Contract No.	Job No.	Laboratory DPO/Region
SVL Analytical Inc.	Not Indicated	102970	

Review Assigned Date September 24, 2002 Data Validator Lisa Tyson
Review Completion Date September 30, 2002 Report Reviewer Bill Fear

Sample Number	Laboratory ID	Matrix	Analysis
S0STKPLA00	E309034	Leachate	TCLP Metals and Mercury
S0STKPLB00	E309035		
S0STKPLA07	E309036		
S0STKPLA10	E309037		
SOSTKPLA15	E309038	ı	
S0STKPLA20	E309039		

### DATA QUALITY STATEMENT

by the reviewer.	to EPA Functional guidelines with no qualifiers (flags) added
() Data are UNACCEPTABLE accordi	ing to EPA Functional Guidelines.
() Data are acceptable with QUALIFIC	CATIONS noted in review.
Telephone/Communication Logs Enclosed?	Yes NoX
TPO Attention Required? Yes	No X If yes, list the items that require attention:

#### INORGANIC DATA VALIDATION REPORT

#### **REVIEW NARRATIVE SUMMARY**

This data package was reviewed according to "USEPA Contract Laboratory Program National Functional Guidelines for Inorganic Data Review," February 1994.

Raw data were reviewed for completeness and transcription accuracy onto the summary forms. Approximately 10-20% of the results reported in <u>each</u> of the samples, calibrations, and QC analyses were recalculated and verified. If problems were identified during the recalculation of results, a more thorough calculation check was performed.

Job No. 102970 consisted of six samples for TCLP metals and mercury analyses.

The following table lists the data qualifiers added to the sample analyses. Please see Data Qualifier Definitions, attached to the end of this report.

Sample ID	Elements	Qualifiers		Review Section
None	None	None	None	None

Method/SOW	Number	TCLP
Revision	0.0	

### Inorganic Deliverables Completeness Checklist

		•
<u>P</u>	Inorganic Cover Page	
P	Inorganic Analysis Data Sheets	·
P	Initial Calibration and Calibration Verification Results	
P	Continuing Calibration Verification Results	
P	CRDL Standard for ICP and AA	·
P	Blank Analysis Results	
P	ICP Interference Check Sample Results	
P	Spiked Sample Results	
P	Post-digest Spiked Sample Analysis	
<u>P</u>	Duplicate Sample Results	
P P P P P P P P P P P P P P P P P P P	Instrument Detection Limits	
P	Laboratory Control Sample results	•
NA	Standard Addition Results	
P	ICP Serial Dilution Results	
NA	Holding Times Summary Sheet	·
	ICP Interelement Correction Factors	•
	IOD I' D	
<u> </u>	ICP Linear Ranges	
<u>P</u> <u>P</u>	Raw Data	
<u>P</u>	<u> </u>	P Blanks P Spikes
P	Raw Data	P Blanks P Spikes P LCS
<u>P</u> <u>P</u>	Raw Data P Samples P Calibration Standards	
P P NA	Raw Data  P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution)	P LCS
<u>P</u> <u>NA</u>	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis	P LCS
<u>P</u> <u>NA</u>	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only	P LCS
<u>P</u> <u>NA</u>	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)	P LCS
<u>P</u> <u>NA</u>	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)  Analysis Run Log (Form XIV)	P LCS
NA P P P P	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)  Analysis Run Log (Form XIV)  Chain-of-Custody	P LCS
<u>P</u> <u>NA</u>	Raw Data  P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution) P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)  Analysis Run Log (Form XIV)  Chain-of-Custody  Sample Description	P LCS
NA P P P P	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)  Analysis Run Log (Form XIV)  Chain-of-Custody  Sample Description  Case Narrative	P LCS
NA P P P P P	Raw Data  P Samples P Calibration Standards  P Duplicates P ICP QC (ICS and Serial Dilution)  P Furnace AA P Mercury Analysis  Percent Solids Calculations - Solids Only  Sample Prep/Digestion Logs (Form XIII)  Analysis Run Log (Form XIV)  Chain-of-Custody  Sample Description  Case Narrative	P LCS
NA P P P P P P P	Raw Data  P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution) P Furnace AA P Mercury Analysis Percent Solids Calculations - Solids Only Sample Prep/Digestion Logs (Form XIII) Analysis Run Log (Form XIV) Chain-of-Custody Sample Description Case Narrative Method References	P LCS
NA P P P P P P P P P P P P P P P P P P P	Raw Data  P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution) P Furnace AA P Mercury Analysis Percent Solids Calculations - Solids Only Sample Prep/Digestion Logs (Form XIII) Analysis Run Log (Form XIV) Chain-of-Custody Sample Description Case Narrative Method References  = Provided in original data package, as required by the SOW	P LCS
NA P P P P P P P	Raw Data  P Samples P Calibration Standards P Duplicates P ICP QC (ICS and Serial Dilution) P Furnace AA P Mercury Analysis Percent Solids Calculations - Solids Only Sample Prep/Digestion Logs (Form XIII) Analysis Run Log (Form XIV) Chain-of-Custody Sample Description Case Narrative Method References	P LCS

NR = Not required under the SOW

NA = Not applicable to this data package or analysis

**X** 

I.	DELIVERA	BLES							
	All deliverables were present.								
	Yes	No_X_							
	Comments:	A Form 11 was not provided. No action is required.							
п.	HOLDING T	TIMES AND PRESERVATION CRITERIA							
	All holding ti	mes and preservation criteria were met.							
	Yes_X_	No							
•	Comments:	All samples were analyzed within required holding times. No shipping or receiving problems were noted. Chain-of-custody, summary forms, and raw data were evaluated.							
m.	INSTRUME	NT CALIBRATIONS: STANDARDS AND BLANKS							
	Initial instrum	ent calibrations were performed according to method requirements.							

Comments: None.

No___

None.

No___

Yes_X_

Yes_X_

Comments:

The instruments were calibrated using one blank and the appropriate number of standards.

Yes X No___

Comments: The calibration correlation coefficients were greater than 0.995.

IV. FO	ORM 1 - SAMPLE	ANALYSIS RESULTS
--------	----------------	------------------

IV.	FURWII-S	AMPLE ANAL # 515 RESULTS
	Sample analy	yses were entered correctly on Form Is.
	Yes_X_	No
	Comments:	None.
v.	FORM 2A -	INITIAL AND CONTINUING CALIBRATION VERIFICATION
	The initial armethod requi	nd continuing calibration verification standards (ICV and CCV, respectively) met rements.
	Yes_X_	No
	Comments:	None.
	The calibration and 80-120%	on verification results were within 90-110% recovery for metals, 85-115% for cyanide, for mercury.
	Yes_X_	No
	Comments:	None.
	The continuin	g calibration standards were run at 10% frequency.
	Yes_X_	No
	Comments:	None.
VI.	FORM 2B - 0	CRDL STANDARD FOR ICP AND AA
	analyzed at the	Standards (CRI) at two times the CRDL or the IDL (whichever were greater) were beginning and the end of each sample run, or at a minimum of twice per eight hours, s more frequent.
	Ves Y	No.

Comments:

None.

	GFAA Anal sample run.	lysis: Standar	ds (CRA) at two times CRDL were	analyzed at the beginning of each
	Yes	No	NA_X_	
	Comments:	The labora	atory did not perform GFAA analyse	PS.
	The CRI and	d/or the CRA v	were analyzed after the ICV.	
	Yes	No	NA <u>X</u>	
	Comments:	None.		
VII.	FORM 3 - B	BLANKS		
	The initial an	d continuing ca	alibration blanks (ICB and CCB, resp	ectively) met method requirements.
	Yes_X_	. No	·	
	Comments:	None.		·
	The continui	ng calibration	blanks were run at 10% frequency.	
	Yes_X_	No		
	Comments:	None.		• .
			ank was run at the frequency of one is more frequent), and for each matr	
•	Yes_X_	No		
	Comments:	None.		
	All analyzed l	olanks were fro	ee of contamination.	
	Yes_X_	No		
	Comments:	None.		

#### VIII. FORM 4 - ICP INTERFERENCE CHECK SAMPLE

The ICP interference check sample (ICS) was run twice per eight hour shift and/or at the beginning and end of each sample set analysis sequence (whichever is more frequent).

Yes_X_

No___

Comments:

None.

Percent recovery of the analytes in solution ICSAB were within the range of 80-120%.

Yes_X_

No___

Comments:

None.

Sample results for aluminum, calcium, iron, and magnesium were less than the ICSA values.

Yes_X_

No___

Comments:

None.

#### IX. FORM 5A - MATRIX SPIKE SAMPLE ANALYSIS

A matrix spike sample was analyzed with every twenty or fewer samples of a similar matrix, or one per sample delivery group (whichever is more frequent).

Yes_X_

No___

Comments:

None.

The percent recoveries (%R) were calculated correctly.

% Recovery =  $\frac{(SSR - SR)}{SA}$  X 100

SSR = spiked sample result

SR = sample result

SA = spike added

Yes_X No__

Comments:

None.

X.

XI.

Data Validation Report

•	eries were within 75-125% (an exception is granted where the sample concentration is see spike concentration).
Yes	No_X_
Comments:	The spike recoveries for selenium (129.0%) and mercury (151.8%) exceeded the 75-125% criteria. However, no qualification was necessary because detected results for these elements were not reported in the samples.
FORM 5B -	POST DIGEST SPIKE RECOVERY
pre-digestion	t spike was performed for those elements that did not meet the specified criteria (i.e., /pre-distillation spike recovery falls outside of control limits and sample result is less es the spike amount added, exception: Ag, Hg).
Yes_X_	No NA
Comments:	The post digest spike recovery for selenium was within QC limits and a post digest spike was not required for mercury. Results are not qualified based on post digest spike data.
FORM 6 - D	UPLICATE SAMPLE ANALYSIS
•	nple analysis was performed with every twenty or fewer samples of a similar matrix, nple delivery group (whichever is more frequent).
Yes_X_	No
Comments:	None.
The RPDs we	re calculated correctly.
Yes_X_	No
Comments:	None.
	encentrations greater than five times the CRDL, RPDs were within ±20% (limits of or soil/sediments/tailings samples).
Yes_X_	No

Comments:

None.

	For sample concentrations less than five times the CRDL, duplicate analysis results were within the control window of ± CRDL (two times CRDL for soils).								
	Yes_X_	No			•				
	Comments:	None.					· · ·		
XII.	GFAA QC	·							
	Duplicate inju	ections were p	performed on	all GFAA sa	mples and the	he RSD wa	s within ± 2	0%.	
	Yes	No	NA_X	_			٠		
	Comments:	None.							
	Analytical sp	ikes were perl	formed on all	GFAA samp	oles and the	percent rec	overy was 8	5 - 115%.	
	Yes	No	NA <u>X</u>	-	•			•	
	Comments:	None.							
	MSAs were a	nalyzed when	required and	the correlati	on coefficie	nt was > 0.	, 995.		
	Yes	No	NA_X	-					
	Comments:	None.							
XIII.	FORM 7 - LA	ABORATOR	Y CONTRO	L SAMPLE		•		•	
	The laboratory of a similar ma	-			•	•	•	er samples	
	Yes_X_	No			•				
	Comments:	None.					· ·		
	All results wer	e within cont	rol limits.	•					
	Yes_X_	No							
	Comments:	All LCS rec	overies were	within the Q	C limits of	80-120%.			

## XIV. FORM 8 - STANDARD ADDITION RESULTS

	Results from	graphite furnace	standard additio	ns were entered	on Form VIII as d	lirected in the SC	)W.
	Yes	No	NA_X_			,	
	Comments:	None.					
xv.	FORM 9 - 10	CP QC					
		<del>-</del>	ed for ICP anal ivery group, wh	•	twenty or fewer s frequent.	samples of a sim	ilar
	Yes_X_	No					
	Comments:	None.					
	The serial dil	ution was withou	ut interference p	roblems as defi	ned by the metho	d.	
	Yes_X_	No					
	Comments:	All %Ds were IDL.	e less than 10% o	r the original sa	mple result was le	ess than 50 times	the
XVI.	FORM 10 - (	QUARTERLY I	INSTRUMENT	DETECTION	LIMITS (IDL)		
	IDLs were pro	ovided for all ele	ements on the ta	rget analyte list	•	•	
	Yes_X_	No			•	•	
	Comments:	A Form 10 w exception of c	•	d the IDLs we	re the same as the	he CRDL with	the
XVII.	FORM 11 - I	NTERELEME	NT CORRECT	ION FACTOR	RS FOR ICP		
•	Interelement c	orrections for IC	CP were reported	<b>d</b> .			
	Yes	No_X_	. NA				
·	Comments:	Interelement o		s Form 11 was	not provided for t	the ICP metals.	No

XVIII.	FORM 12 - ICP LINEAR RANGES					
	ICP linear ra	nges were reported	i.			
	Yes_X_	No	NA			
	Comments:		s provided, however, the linear ranges were determined more than 3 sample analysis.			
XIX.	LINEAR RA	ANGE VERIFICA	ATION ANALYSIS			
	Linear Range 5% of the tru		ysis (LRA) was performed and results were within control limits of			
	Yes	No	NA_X_			
	Comments:	None.				
XX.	FORM 13 - 1	PREPARATION	LOG			
	Information o	on the preparation	of samples for analysis was reported on Form XIII.			
	Yes <u>X</u>	No				
	Comments:	None.				
XXI.	FORM 14 - A	ANALYSIS RUN	LOG			
	A Form XIV	with the required in	nformation was filled out for each analysis run in the data package.			
	Yes_X_	No				
	Comments:	None.				
XXII.	Additional C	omments or Prob	lems/Resolutions Not Addressed Above			
•	Yes_X_	No				
	Comments:		in sheet that associates the EPA sample numbers with the assigned pers was not consistent with other portions of the data package. The			

laboratory was contacted and after a review of the data, a revised sample log-in

sheet was provided.

## 

P P P P P CV P
P_P_P_CV
P_ P CV P_
P CV P_
CV P_
P_ [
P_ [
: -:
i -i
<u> </u>
<u> </u> -
<u>                                     </u>
i—i
<u> </u>
ii
—
<u>                                     </u>
<u> </u> -
i—i
<u>  </u>
<u> </u> -
<u> </u>
<u> </u>
i — i

lor Before:	COLORLESS	Clarity Before	: CLEAR	Texture:
lor After:	COLORLESS	Clarity After:	_	Artifacts:
mments: CLIENT_ID: UNITS:_MG/L	SOSTKPLA00			

ILM02.1

## INORGANIC ANALYSES DATA SHEET

EPA SAMPLE NO.

重

邓

Lab Name: SVL ANALYTICAL	INC.	Contract:				E309035	
Lab Code: SILVER Ca		_			SDG	No.: 102970	
Matrix (soil/water): WATE	R.		L	ab Samp	le ID	: E309035	
Level (low/med): LOW_	<u> </u>		D	ate Rece	eived	: 08/30/02	
% Solids:0.	0						
Concentration	Units (ug	/L or mg/kg dr	У	weight)	MG/	Ľ,	
CAS No.	Analyte	Concentration	C	Q	M		
7440-38-2 7440-39-3 7440-43-9 7440-47-3	BariumCadmium	0.010 1.4 0.13 0.0060	  -		P P P P	•	
7439-92-1 7439-97-6 7782-49-2	Lead	0.77 0.00020 0.010 0.0050	<del>ט</del> ט	N	P CV P P		
			-				
			- -				

Color	Before:	COLORLESS	Clarity	Before:	CLEAR_	Texture:	
color	After:	COLORLESS	Clarity	After:	CLEAR_	Artifacts:	
omme: CL: UN:		SOSTKPLB00 EXTRACT					·

FORM I - IN

TT.MO2 1

N 9/31/N

## INORGANIC DATA QUALITY ASSURANCE REVIEW

#### Region VIII

### DATA QUALIFIER DEFINITIONS

For the purpose of Data Validation, the following code letters and associated definitions are provided for use by the data validator to summarize the data quality. Use of additional qualifiers should be carefully considered. Definitions for all qualifiers used should be provided with each report.

#### GENERAL QUALIFIERS for use with both INORGANIC and ORGANIC DATA

- R Reported value is "rejected." Resampling or reanalysis may be necessary to verify the presence or absence of the compound.
- J The associated numerical value is an estimated quantity because the Quality Control criteria were not met.
- U J The reported amount is estimated because Quality Control criteria were not met. Element or compound was not detected.
- N J The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- N The analysis indicates the presence of an analyte for which there is presumptive evidence to make a tentative identification.
- U The material was analyzed for, but was not-detected above the level of the associated value. The associated value is either the sample quantitation limit or the sample detection limit.

#### **ACRONYMS**

AA	Atomic Absorption
Ag	Silver
CCB	Continuing Calibration Blank
CCV	Continuing Calibration Verification
CFR	Code of Federal Regulations

**CLP** Contract Laboratory Program **CRA** CRDL standard required for AA **CRDL** Contract Required Detection Limit

CRI CRDL standard required for ICP

CV Cold Vapor

**EPA** U.S. Environmental Protection Agency **GFAA** Graphite Furnace Atomic Absorption

Hg Mercury

**ICB** Initial Calibration Blank **ICP Inductively Coupled Plasma** ICS Interference Check Sample

**ICSA** Interference Check Sample (Solution A) **ICSAB** Interference Check Sample (Solution AB)

**ICV** Initial Calibration Verification IDL Instrument Detection Limit LCS Laboratory Control Sample

LRA Linear Range Verification Analysis

**MSA** Method of Standard Additions

PDS Post Digestion Spike

QC **Quality Control** 

Relative Percent Difference RPD **RPM** Regional Project Manager

**RSD** Percent Relative Standard Deviation

SA Spike Added

SAS Special Analytical Services **SDG** Sample Delivery Group SOW Statement of Work

SR Sample Result

SSR Spiked Sample Result **TPO** Technical Project Officer #

	1		
INORGANIC	ANALYSES	DATA	SHEET

EPA	SAMPLE	NO.
-----	--------	-----

ab Name: SVL	_ANALYTICAL_	INC.	Contract: _		E309036
ab Code: SILV	ÆR Ca	se No.:	SAS No.	:	SDG No.: 102970
atrix (soil/w	water): WATE	R		Lab Samp	ole ID: E309036
evel (low/med	l): LOW_	<del>_</del>		Date Rec	eived: 08/30/02
Solids:	0.	0			·
. Co	oncentration	Units (ug	/L or mg/kg dry	y weight)	: MG/L
	CAS No.	Analyte	Concentration	C Q	м
	7440-38-2		0.47		<u> </u>
•	7440-39-3	Barium	0.63		[P]
	7440-43-9  7440-47-3	_	0.0020		P_     P_
	7439-92-1	•	0.0050		[P_]
	7439-97-6		0.00020		c⊽
•	7782-49-2		0.010		P
		Silver	0.0050		P
	İ				<u> </u>
•		<u> </u>			
					<u> </u>
		 		_	
		<u> </u>		_!	. [ ]
				_	.
				_	.
	İ				·[ <u>—</u> ]
					-
	<u> </u>	<del></del>		- I	· <b>   </b>
	[		<del></del>	-	-{
		<del></del>		-  <del></del>	· {
•	<del></del>	<del></del>	<del></del>	-	·¦ <del></del> ¦
		<del></del>	<del></del>	-	·  <del></del>
				-	·
	·			_ '	···
lor Before:	COLORLESS	Clarit	y Before: CLEA	AR_	Texture:
lor After:	COLORLESS	Clarit	y After: CLEA	AR_	Artifacts:
mments: CLIENT_ID:_{ UNITS:_MG/T.	SOSTKPLA07_		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
UNITS: MG/L	EXTRACT				

S a/30/08

ILM02.1

U	ده	•	LPA	_	CLP

	Ţ		
INORGANIC	ANALYSES	DATA	SHEET

EPA	SAMPLE	NO.

Lab Name: SVL	ANAT.VTTCAT.	TNC.	Contract •				E309037
Lab Code: SIL		<del></del>		8		SDG	No.: 102970
Matrix (soil/v				-			e E309037
Level (low/med	d): LOW_	_		Da	ate Rec	eived	: 08/30/02
% Solids:	0.	0					
Co	oncentration	Units (ug	/L or mg/kg dr	y v	weight)	: MG/	L
	CAS No.	Analyte	Concentration	С	Q	M	
	7440-38-2 7440-39-3	Arsenic Barium	0.027	:		P_ P	•
	7440-43-9 7440-47-3	Chromium_	0.0020	<u> </u> _		P_ P_	
	7439-92-1  7439-97-6	Mercury_	0.040	Ū		P CV	
	7782-49-2 7440-22-4	Silver	0.010			P_ P_	
				-  -			•
				_			

Color Be	efore:	COLORLESS	Clarity	Before:	CLEAR_	Texture:	
Color A	fter:	COLORLESS	Clarity	After:	CLEAR_	Artifacts:	
Comments		COCMEDIA 1 O			•		

CLIENT_ID: SOSTKPLA10
UNITS: MG/L_EXTRACT__

FORM I - IN

ILM02.1

5 a/30/08

<del></del>		0.5.	DFA - CDF		
		INORGANIC	1 ANALYSES DATA	SHEET	EPA SAMPLE NO.
ab Name: S	VL_ANALYTICAL_	INC	Contract: _		E309038
Lab Code: S	ILVER Ca	se No.:	SAS No.	:	SDG No.: 102970
latrix (soi	l/water): WATE	R		Lab Sam	ple ID: E309038
evel (low/	med): LOW_	_		Date Red	ceived: 08/30/02
Solids:	0.	0			
	Concentration	Units (ug	/L or mg/kg dr	y weight	): MG/L
	CAS No.	Analyte	Concentration	c Q	M
,	7440-38-2 7440-39-3	Barium	0.010	<del></del>	<del>                                    </del>
	7440-43-9  7440-47-3  7439-92-1	Cadmium_ Chromium_ Lead	0.0020 0.087 0.11	_	P   P   P   P   P   P   P   P   P   P
	7439-97-6 7782-49-2	Mercury	0.00020	U N U N	_ CV  _ P_
	7440-22-4	Silver	0.0050	U	-   P_   -
				_	-{
				-	-
olor Before	: COLORLESS	Clarit	y Before: CLEA	LR_	Texture:

FORM I - IN

ILM02.1

V5 9/30/0X

	1		
TNORGANIC	ANALYSES	DATA	SHEET

EPA SAMPLE NO.

THE PROPERTY.

		•			E309039
Lab Name: SVL_	ANALYTICAL_	INC.	Contract: _		İİ
Lab Code: SILV	ÆR Ca	se No.:	SAS No.	°	SDG No.: 102970
Matrix (soil/w	water): WATE	R		Lab Sampl	Le ID: E309039
Level (low/med	l): LOW_			Date Rece	eived: 08/30/02
₹ Solids:	0.	0			
Co	ncentration	Units (ug	/L or mg/kg dr	y weight):	MG/L
	CAS No.	Analyte	Concentration	C Q	М
	7440-38-2	Arsenic	0.010	Ū	P_
	7440-39-3	Barium	1.5		P_
•	•	Cadmium_	0.0020	וסו	P_
	•	Chromium_	0.071		P_
	•	Lead	0.18		P
		Mercury	0.00020		CA
		Selenium_	0.010		P_
	7440-22-4	Silver	0.0050	'	P_
	ļ	İ	ļ	<u> -  </u>	<del></del>
		ļ <del></del>		-	—
		ļ		-	—
		· · · · · · · · · · · · · · · · · · ·		!-!!	
•		<u> </u>		- i	<b>—</b> [
				-	
	i	i ————————————————————————————————————			<u>i</u>
	i	i		<u> </u>	
	!			!_!!	
	<u></u>			!_! <u></u> .!	!
	<u> </u>			!_! <u></u>	
	!				
					<b></b>
_	İ		**	_	i
olor Before:	COLORLESS	Clarit	y Before: CLE	AR_	Texture:
olor After:	COLORLESS	Clarit	y After: CLE	AR_	Artifacts:

FORM I - IN

comments:

CLIENT_ID: SOSTKPLA20_

UNITS: MG/L EXTRACT_

ILM02.1

5 9/3/08

List all analytes which do not meet holding time criteria

Sample ID	Matrix	List Pre- servative (A, B, C)	Date Collected	*Metals Analysis Date/s	*Hg CVAA Analysis Date	*CN Analysis Date	Analysis Date/s	No. of Days Past Holding Time	Action
E 309034	Leading	~/7	8/30/02	9/13/02	6/13/or		<u> </u>	Ø	we
9035			/ /	//7	7,7			. /	5
9036									J
9057									
9038									
9039									
.,									
			]						
- <del></del>									
								·	
						•			
COMMENTS									
					<del></del>				
						· ·			

_	_	_	_
Α	ct	io	ns

- If holding times are exceeded, all sample results are estimated (J)/(UJ).
   If holding times are grossly exceeded (>=2*holding time), detected results are estimated (J), and non-detected results are rejected (R).

	Validated by:	Date:
	L. Taean	<u> </u>
Preservatives:		
A. Preserved w/HNO3 and cooled to 4°C	Review By:	Date:
B. Cooled to 4°C	15.US	•
C. No Preservative		

ANALYTE	HOLDING TIME	PRESERVATIVE	
		AQUEOUS	SOIL
Metals	180 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Mercury	28 days	pH < 2 w/HNO3, 4 Deg. C	4 Deg. C
Cyanide	14 days	pH > 12 w/NaOH, 4 Deg. C	4 Deg. C

Holding Time = Analysis Date - Collection Date

BATCH:	102970	

List all ICP analytes that did not meet the percent recovery criteria for initial calibration verification (ICV) and	1
continuing calibration verification (CCV).	

Analyte	ICV CCV	TRUE	Found	% R	Action	Samples Affected
	~ ne	1				
Contes	~ ///L	<del>-/</del>				
- <del></del>						· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·					
				<u> </u>		
		- <del></del> -				
						<del></del>
				·		,
<del></del>					,	
	,			•		
in after CRI, ev	ery 10 samples	and at end of	sequences? (C	LP only) (Y	es No	· · · · · · · · · · · · · · · · · · ·
CRDL check s	ample (CRI) and	alyzed at the be	eginning and at	the end of eac	h sample run (CL	P only)? Yes No
ENTS						
·		<del>-</del>				· · · · · · · · · · · · · · · · · · ·

Actions	
ACHORS	۶.

ICV/CCV Actions:

**Detected results** 

Non-detected Results

PERCENT RECOVERY

<75% 75-89% 90-110% 111-125% >125% R J V J R R UJ V V

1. If the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).

BATCH: 102970	
---------------	--

List all mercu	List all mercury results that did not meet the percent recovery criteria for the ICV and/or CCV standard.					
ICV	TRUE	Found	% R	Action	Samples Affected	
	<del>                                     </del>			1 :		
C		net				
		1		† ·		
<del> </del>	<del> </del>			<del> </del>		
	<del> </del>	<del> </del>	<del> </del>			
	+	<del>                                     </del>		<del>                                     </del>		
	<del> </del>	<del> </del>	<del> </del>	<del> </del>		
	<del> </del>	<del> </del>		<u> </u>		
	<del> </del>	<del> </del>		<del> </del>		
	+	<del> </del>		<del> </del>		
<u> </u>	<del> </del>		<del> </del>			
	<del>                                     </del>					
	<del> </del>			<b> </b>		
<u> </u>	<del></del>		<del></del> -			
<u> </u>	<del> </del>					
<u> </u>	<del> </del>					
	<del> </del>					
	<del> </del>					
<u> </u>	<del> </del>					
	<b> </b>					
	<del> </del>			-		
	-					
	ļ		,			
	<u> </u>			<u> </u>		
1 Were the c	orrect number	of standards and	i blanks used to	calibrate the in	strument? (Yes) No	
		relation coefficie			•	
		es and samples:			0,999	
				ning of each san	nple run? (CLP only) Yes No	
. Was a CRDL check sample (CRA) analyzed at the beginning of each sample run? (CLP only) (es) No						

Actions:

COMMENTS

#### PERCENT RECOVERY

	<65%	65-79%	80-120%	121-135%	>135%
Detected results	R	J	v	J	R
Non-detected Results	R	UJ	V	V	V

- 1. If four standards and a blank were not used for initial calibration, or the instrument was not calibrated daily and each time the instrument was set up, qualify the data as rejected (R).
- 2. If the initial calibration correlation coefficient was less than 0.995, qualify sample results as estimated (J)/(UJ).

2 4	
MATRIX: 1211/1	BATCH: 102970

List the highest positive AND negative blank result >=|DL| below. Use one worksheet for soil matrix and another for water matrix.

Analyte	ICB CCB PB/MB	IDL	Blank Conc.	5 * Bl. Conc.	Action	Samples Affected
		<u> </u>				
Nahit	<u>†                                    </u>					
						· .
						<del></del>
	1					·
· · ·						
	1	<del> </del>				· · · · · · · · · · · · · · · · · · ·
	+		<del></del>			<del></del>
	-					
<del></del>						<del></del>
	<del></del>					<del></del>
	<del></del>					
<del></del>	<del> </del>					
	<del> </del>					
	+					
	<del> </del>					
	<del> </del>					<del></del>
<del></del> _	<del> </del>					<u> </u>
	<del> </del>					
	<u> </u>					· · · · · · · · · · · · · · · · · · ·
						<u> </u>
	<u> </u>					
	<u> </u>					
TE: Verify that th	e absolute value	of any analyte	e concentration	n in the PB or M	B is < CRDL *	
rify						
e prep blank per n	natrix					
e prep blank per b	atch					
analyzed immedi						
B analyzed after e						
ld/equipment/rinsa		zed? If so, inc	lude above if a	pplicable to pro	iect.	· · · · · · · · · · · · · · · · · · ·
MMENTS				,,	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·
THE TO						

#### Actions:

- 1. If |Blank| < IDL, no action is taken.
- 2. If Blank > = IDL, then all sample results > = IDL and < 5*Blank are non-detected (U).
- 3. If Blank = < -IDL, all sample results > = IDL and < 5* |Blank| are estimated (J).
- 4. If Blank = < -IDL then all non-detected results are estimated (UJ).
- * If blank concentration > CRDL, all detected sample results < 5 *Blanks are rejected (R).
- * If blank concentration > CRDL, all detected sample results > 5 *Blanks and < 10* Blank are estimated (J).

#### IVA. INORGANIC ANALYSIS WORKSHEET -- ICP INTERFERENCE CHECK SAMPLE

	BATCH. 1027 7 C
NOTE:	The sample results can be accepted without qualification, if the sample concentrations of AI, Ca, Fe and Mg are less than or

equal to the concentration found in the ICSA solution.

Examine the sample results in ug/L and list any Al, Ca, Fe or Mg results that are greater than the ICSA values.

Sample ID	Analyte	Sample Result	ICS Value	Comments
1				
			<u> </u>	
				1

List any analytes in the ICS AB solution that did not meet the criteria of 80-120% R.

Analyte	% R	Action	Samples Affected
	<del> </del>	<del>- </del>	<u></u>
	1 1		
	100		
<del></del>	<del>-  / ) v</del>	<del></del>	
<del></del>	<del></del>	<del></del>	
<del></del>			
<del></del>		<del></del>	
	<u> </u>		
Protocol Only		<del></del>	<del> </del>
re Interference Chi	ack Semales run a	the heginning and end of ea	ch sample analysis run, or a minimum of twice per 8-hour shift (whicher
ore frequent)?	Yes	No	on sumple analysis rain, or a minimal of twice per o-floor still (which of
	<del>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>		
MMENTS			

Actions:

#### PERCENT RECOVERY

	<50%	50-79%	80-120%	>120%
Detected results	R	` J	V	· J
Non-detected results	R	UJ	V	V

#### V. INORGANIC ANALYSIS WORKSHEET -- PRE-DIGESTION MATRIX SPIKE

MATRIX: 1emble	BATCH: 102970
· · · · · · · · · · · · · · · · · · ·	The pre-digestion spike recovery criteria are not evaluated for Ca, Mg, K,
Na, Al and Fe for soil samples, and Ca, Mg, K and Na for water samples	<b>i.</b>

ample ID	Analyte	Spiked Sample Result	Sample Results	Spike Added	% R	Action	Samples Affected
3090345	1+-1	1.518	NO	1.0	151.8	5	112 d. tacits
	SE	257,9	~0	200	129.0	J	100.00100
							No g. ral
					_		1.
				'			
							·
	<del></del>					<u> </u>	
			····				
					<del></del>		
						<del></del>	
				-			
	-			1			
	<del></del>						
		<del>                                     </del>	·	<del>  </del>		<u> </u>	
	<del>-                                    </del>			<del>                                     </del>		<u> </u>	
Was a pre-cree frequent)		trix spike prepa	red at the re	quired frequenc	y of once eve	ry 20 samples	s, or every SDG (whichever is
		atrix spike anal very criteria?	yzed for all I(	CP elements, ex		nat did not me	eet the pre- 987 on the 02
Was a matr	ix spike prep	ared for each o	lifferent sam	ole matrix? (	Yes	No	
MMENTS						- <u></u>	
							: '

1. If any analyte does not meet the % R criteria, qualify all associated samples using the following criteria: Actions:

	P	ERCENT REC	OVERY	
	< 30%	30-74%	5-125%	1259
Detected results	J	J	( v	<i>)</i> s
Non-detected Results	R	IJ	V	V

<u>Note</u>

If analyte concentrations in the sample is greater than 4 times the amount spiked, then limits do not apply.

BATCH: 102970

#### IX. INORGANIC ANALYSIS WORKSHEET -- ICP SERIAL DILUTION ANALYSIS

Analyte	IDL	50*IDL	Sample Results	Serial Dilution Result	% D ————	Action	Samples Affected
C	ern /	h - /					
		Tex-	<del> </del>			† · · · · · · · · · · · · · · · · · · ·	<del></del>
						<u> </u>	
		<u> </u>	<u> </u>		<del></del>	<u> </u>	
						ļ	·
			ļ				
	·		<del> </del>	<del> </del>		·	
			<u> </u>	<del> </del>			<del></del>
	<del></del>		<del> </del>	<del> </del> -		<del> </del>	
				<del> </del>			
	<del></del>	<del></del>		<del> </del>			
						<del>                                     </del>	<del></del>
					·		
				<u> </u>			
			<u> </u>	<del> </del>	· · · · · ·	·	
			<del></del>	<del>                                     </del>			
<del></del>				<del> </del>		<del> </del>	
<del></del>	<del></del>		<u> </u>		·		
CTIVELY C	OUPLED PLA	SMA SERIAL	DILUTION AN	ALYSIS:		L	
dilutions we	ere performed		ix and results o	of the diluted samp	ole analysis	agreed within	<del></del>
		med for the fol					
MENTS			<del></del>				

Actions:

Estimate (J) detected results if %D is > 10%.

#### NOTES

If results from diluted samples are higher than concentrated sample, matrix interference should be suspected and sample results may be biased low.

### X. INORGANIC ANALYSIS WORKSHEET -- SAMPLE RESULT VERIFICATION

BATCH: 102970

Describe any raw data anomalies (i.e., baseline shifts, negative absorbances, transcription or calculation errors, legibility, etc.	
1. Describe any faw data anomalies (i.e., basenire shirts, negative absorbances, transcription of calculation entries, regionity, etc.	
ALUAC	
<ol><li>List results that fall outside the linear range of the ICP instrument or the calibrated range of the AA or Cyanide instrument, and were not reanalyzed.</li></ol>	
N	
	{
3. Were ICP linear ranges obtained within 3 menths of and preceding, the sample analyses? Yes No NA	
4. Were ICP interelement corrections obtained within 12 months of, and preceding, the sample analyses? Yes No NA	
5. Were instrument detection limits present, found to be less than or gental to the CRDL, and obtained within 3 months of, and	
preceding, the sample analyses?  Yes  No  NA	
6. Were all sample results reported down to the IDL if running CLP protocol?  Yes No NA	-
. Were all sample results reported down to the IDE in farming OEF productors	<u>`</u>
7. Were all sample results reported down to MDL if running SW-846 methods?  Yes  No  NA	
3. Were sample weights, volumes, percent solids, and dilutions used correctly when reporting the results? Yes No	$-\!\!\!\!-\!\!\!\!\!-\!\!\!\!\!-$
COMMENTS CAPLE IX SHEAT COR TO TO	
All seported to "CADL" - NO "IDL'S - comment	
No Form 11 - Comment	
<u> </u>	
	$\dashv$

TE	rı	-11		.,
TE	u	п∟	. ^4	w

VI. INORGANIC ANALYSIS WORKSHEET -- LABORATORY DUPLICATES

MATRIX:/	leachate	BATCH: 102976	
List all parameters that do not meet RPD or CRDL criteria	а.		•

Sample ID	Analyte	Sample Result	Dup. Results	. RPD	Difference ³	Action	Samples Affected
309034	Col	Lan 1	net				
	,						
			'				
				-			
							· ·
							,
						<u> </u>	
					·		
MMENTS			<del></del>				· · · · · · · · · · · · · · · · · · ·

#### Actions:

#### 1. AQUEOUS

If both sample values > 5*CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 20%.

If either sample value < 5*CRDL, and the difference between the duplicate and the original is > CRDL, estimate (J)/(UJ) all sample results of the same

#### 2. SOLID

If both sample value > 5°CRDL, estimate (J/UJ) all sample results of the same matrix if the RPD is > 35%.

If either sample value < 5°CRDL, and the difference between the duplicate and the original is > 2°CRDL, estimate (J)/(UJ) all sample results of the

Difference = |Sample result - Duplicate sample result|
Include outliers for field duplicates (if applicable)

#### Note

A duplicate sample must be prepared for each sample matrix analyzed or per batch, whichever is more frequent.

### VII. INORGANIC ANALYSIS WORKSHEET -- LABORATORY CONTROL SAMPLES

			leachete		_	BATCH: 10.	2576	
List all paramete	ers that do not r Analyte	True Value	Found Value	% R	Action		Samples Affected	
	<del> </del>				<u> </u>			
	Jen	met						4.4
	, , , ,							·
<del></del>	<del> </del>	<del>                                     </del>	· · · · · · · · · · · · · · · · · · ·		<del> </del>	† · · · · · · · · · · · · · · · · · ·		-
	<del></del>	<del>                                     </del>			<del> </del>			
		<del>                                     </del>			1			
		+	<u> </u>		<del> </del>	<del> </del>		
		<del>                                     </del>			<del> </del>	<del>                                     </del>	·	···
		<del> </del>			<del>                                     </del>			
		<del>                                     </del>						·
		<del> </del>			<del> </del>		<del></del>	
	ļ	<del> </del>		<del>_</del>		<del> </del>	<del></del>	
	ļ	<del> </del>			<del> </del>	<del> </del>		
	· · · · · · · · · · · · · · · · · · ·	<del> </del>		<del></del>	<del>                                     </del>	<u> </u>	<del></del>	
		<u> </u>				<del></del>	<del></del>	
		<u> </u>				ļ ·		
		ļ		<del></del>				
						<del> </del>	**	·· <del>·</del>
		<u> </u>		<del></del> .				<del> </del>
					ļ			·
		<u> </u>			L	<u> </u>		
Note:						· .		
CS with the sar	ne matrix as sa	mples must be p	repared for each	SDG.				
COMMENTS								
					· .			
Actions:								
exception: Antin	nony and silver	have no control I	imits. An aqueol	us LCS is not	required for CN	and mercury.		
				PERCENT	T RECOVERY			
AQUEOUS			<50%	50-79%	80-120%	>120%		•
Detected results Non-detected res	sults		R R	UJ J	V V	A A		
	raile		• •		-	-		
SOLID LCS							•	
Recoveries stipul	lated by EMSL		מבו טעי		\A/ITLIAI		ABO\/E	
			BELOW CONTROL		WITHIN CONTROL		ABOVE CONTROL	
			LIMITS		LIMITS		LIMITS	
Detected results			J		V		J	
lon-detected res	ults		ΟJ		V		V	
								norg98.xls

APPENDIX C

**XRF** Results

TABLE 1A
Site Name
SPECTRACE 9000 XRF DATA (PPM)

ID	DATE	TIME	Sb	As	Ba	Cd	Ca	CrHI	CrLO	Co	Cu	Fe	Pb	Mn
0041FCIS1	8/28/2002	1843	46 U	37 U	410	110 U	15000	540 J	730 U	350 U	70 U	23000	88	350 U
S0041FC1S2	8/28/2002	1838	46 U	37 U	360	110 U	50000	910	730 U	350 U	70 U	19000	14 J	390 J
SOOFCCM1S	2 8/28/2002	1826	46 U	37 U	450	130 J	28000	670 J	730 U	350 U	70 U	19000	150	350 U
S00FCCM2S	1 8/28/2002	1832	390	320 U	350	110 U	16000	520 J	730 U	350 U	70 U	37000	3200	2400
S01063W1Z1			46 U	37 U	450	- 110 U	20000	520 J	730 U	350 U	70 U	20000	120	580 J
S04002W1Z1	8/29/2002	1607	52 U	28 U	490	210 U	8100	780 J	380 U	470 U	56 U	17000	55	400 J
S04002W1Z1	B 8/29/2002	1627	52 U	28 U	57 U	210 U	1600 U	410 U	380 U	470 U	56 U	1600 U	- 15 U	210 U
S04002W1Z1	D 8/29/2002	1617	52 U	47 J ·	480	210 U	6900	480 J	440 J	470 U	56 U	16000	81	420 J
S04003E1Z1			52 U	28 U	520	210 U	7600	570 J	380 U	470 U	56 U	15000	34 J	360 J
S0400HT1S2			1200	1200	190 J	230 U	4500 J	440 U	570 U	350 U	49 U	43000	6800	2700
S0400HT4Z0			86 U	220	490	230 U	28000	440 U	570 U	350 U	49 U	18000	420	820 J
S0400HT4Z0			44 J	47 U	430	150 U	22000	490 J	960 U	230 U	54 U	19000	110	440 U
S0400HT4Z0			39 U	55 J	420	150 U	32000	590 J	960 U	380 J	54 U	17000	86	470 J
S0400HT4Z0			93 J	73 J	360	150 U	20000	440 J	960 U	320 J	54 U	19000	280	710 J
S0400HT4Z0	06 8/25/2002	922	43 J	47 U	410	150 U	22000	450 J	960 U	230 U	54 U	21000	290	580 J
S0400HT4Z0			39 U	47 U	390	150 U	18000	390 U	960 U	230 U	54 U	13000	87	440 L
S0400HT4Z0	08 8/25/2002	949	39 U	47 U	440	150 U	17000	400 J	960 U	230 U	54 U	14000	21 U	440 U
S0400HT4Z0	09 8/25/2002	944	39 U	47 U	440	150 U	19000	390 U	960 U	330 J	54 U	16000	26 J	440 L
S0400HT4Z	10 8/25/2002	1007	39 U	47 U	400	150 U	19000	710 J	960 U	250 J	54 U	17000	31 J	440 U
S0400HT4Z	11 8/25/2002	1043	39 U	47 U	400	150 U	21000	390 U	960 U	230 U	54 U	19000	160	440 U
S0400HT4Z	12 8/25/2002	1022	39 U	47 U	360	150 U	19000	780 J	960 U	290 J	54 U	17000	120	440 U
S0400SP1Z1	8/28/2002	1853	47 J	37 U	460	. 110 U	8800	620 J	730 U	350 U	70 U	15000	57	500 3
S0401SP1S1	8/28/2002	1759	2700	2800	210 J	310 J	3200 J	410 J	730 U	620 J	70 U	70000	12000	2600
S0401SP1S1	B 8/28/2002	1805	46 U	37 U	66 U	110 U	2300 U	. 310 J	730 U	350 U	70 U	1300 U	14 U	350 U
S0401SP1Z1	8/28/2002	2 1216	120 J	110 J	460	110 U	7200 J	700 J	730 U	350 U	70 U	17000	560	760 J
S0407IH1A1	8/25/2002	2 1441	67 J	36 J	370	150 U	7700	630	270 U	260 U	38 U	22000	120	740 t
S0407IH1Z1	8/25/2002	2 1541	56 U	45 J	440	150 U	19000	600 J	270 U	540 J	38 U	22000	230	980 J
S0407IH1Z1	B 8/25/2002	2 1549	56 U	28 U	90 Ú	150 U	1800 U	300 J	270 U	260 U	38 U	1900 U	21 U	740 L
S0700FG1A	13 8/25/2002	850	110 J	200	390	150 U	27000	390 J	270 U	260 U	38 U	19000	850	940 J
S0700FG1A	3 8/25/2002	2 840	530	930	420	150 U	12000	320 J '	270 U	320 J	38 U	40000	3300	3600
S0700FG1A	6 8/25/2002	2 845	1300	2400	250 J	180 J	3200 J	280 J	270 U	350 J	38 U	54000	7500	4800
S0700FG1Z	1 8/25/2002	1026	56 U	51 J	430	150 U	18000	550 J	270 U	260 U	38 U	19000	240	740 l
S0700FG1Z	2 8/25/2002	2 1032	240	130	340	150 U	10000	580 J	270 U	260 U	38 U	21000	1300	2000 J
S0FILLA1	8/23/2003	2 1229	86 U	34 U	520	230 U	7700	480 J	570 U	350 U	49 U	19000	. 28 U	600 J
S0FILLA2	8/23/2003	2 1234	86 U	34 U	480	230 U	5300 J	440 J	570 U	350 U	49 U	12000	28 U	480 1

U - The analyte was not detected above the detection limit. The detection limit is reported.

J - The associated numerical value is an estimated quantity between the detection limit and the quantitation limit.

TABLE 1A Site Name SPECTRACE 9000 XRF DATA (PPM)

ID	DATE	TIME	Sb	As	Ba	Cd	Ca	CrHI	CrLO	Со	Cu	Fe	Pb	Mn
S0FILLB1	8/25/2002	956	56 U	58 J	520	150 ປ	22000	640	270 U	400 J	38 U	22000	21 U	740 U
SOFILLB2	8/25/2002	1001	56 U	28 U	440	150 U	18000	430 J	590 J	260 U	38 U	16000	21 U	740 U
SOFILLB2D	8/25/2002	1007	56 U	28 U	620	150 U	17000	360 J	270 U	260 U	38 U	13000	21 U	740 U
S0FILLC1	8/25/2002	916	56 U	28 U	570	150 U	38000	290 J	330 J	460 J	38 U	17000	21 U	740 U
S0STGARA1	8/23/2002	1107	86 U	34 U	310	230 U	7200 J	680 J	570 U	350 U	49 U	20000	28 U	540 J
S0STGARA1D	8/23/2002	1117	86 U	34 U	360	230 U	7500	460 J	570 U	350 U	49 U	20000	28 U	690 J
S0STGARA2	8/23/2002	1128	86 U	34 U	300	230 U	6900 J	790 J	570 U	350 U	49 U	20000	28 U	590 J
SOSTKPLA1	8/28/2002	1858	910	890	320	110 U	8200	360 J	730 U	540 J	70 U	37000	4800	2500
SOSTKPLB1	8/25/2002	901	88 J	130	450	150 U	14000	420 J	270 U	300 J	38 U	19000	400	740 U
S400HT4Z4	9/20/2002	1521	55 J	35 U	450	180 U	20000	700 J	1100 U	540 U	67 U	13000	110	660 U

Page 2 of 2

















U - The analyte was not detected above the detection limit. The detection limit is reported.

J - The associated numerical value is an estimated quantity between the detection limit and the quantitation limit.

TABLE 1B
Site Name
SPECTRACE 9000 XRF DATA (PPM)

ID	Hg	Mo	Ni	K	Rb	Se	Ag	Sr	Th	Sn	Ti	U	Zn	Zr
S0041FC1S1	28 U	6.3 U	130 U	27000	120	8.1 U	40 U	79	11 U	130 U	2400 J	15 J	320	190
S0041FC1S2	28 U	6.3 U	130 U	28000	110	8.1 U	68 J	50 J	11 J	130 U	2400 J	19 J	150	180
S00FCCM1S2	28 U	6.3 U	130 U	28000	91	8.1 U	59 ]	180	11 U	130 U	3400	12 U	340	240
S00FCCM2S1	28 U	6.3 U	130 U	22000	88	8.1 U	130 J	55 J	11 U	130 U	1700 J	12 [.] U	4900	200
S01063W1Z1	28 U	6.3 U	130 U	21000	90	8.1 U	67 J	170	14 J	130 U	2500 J	12 U	270	240
S04002W1ZI	47 U	6.4 U	120 U	25000	92	27 U	64 U	200	11 J	100 U	2000 J	10 U	120 J	220
S04002W1Z1B	47 U	6.4 U	120 U	2800 U	23 U	. 27 U	64 U	25 U	8.4 U	100 U	1300 U	10 U	57 U	21 U
S04002W1Z1D	47 U	6.4 U	120 U	21000	75 J	27 U	64 U	190	8.4 U	100 U	1900 J	10 U	90 J	230
S04003E1Z1	47 U	6.4 U	120 U	23000	82	์ 27 บ	64 U	260	8.4 U	100 U	1800 J	10 U	300	200
S0400HT1S2	. 45 U	9.7 U	97 Ú	24000	91	- 23 U	180 J	68	12 J	90 U	1400 J	11 ប	3100	150
S0400HT4Z01	45 U	9.7 U	97 U	26000	97	23 U	64 U	130	10 J	90 U -	2100 J	11 U	6000	210
S0400HT4Z02	56 U	5.6 U	72 U	25000	110	25 U	89 U	71 J	8.4 U	81 U	1500 J	12 J	230 J	210
\$0400HT4Z03	56 U	5.6 U	72 U	23000	83	25 U	89 U	78 J	8.4 U	81 U	1700 J	12 J	83 J	200
S0400HT4Z05	56 U	5.6 U	72 U	25000	81	25 U	89 U	110	8.4 U	81 U	1900 J	20 J	4100	210
S0400HT4Z06	56 U	- 5.6 U	72 U	24000	100	25 U	89 U	110	8.4 U	81 U	1,700 J	17 J	220 J	220
S0400HT4Z07	56 U	5.6 U	72 U	21000	91	25 U	89 U	120	8.4 U	81 U	1200 J	11 Ů	290	150
S0400HT4Z08	56 U	5.6 U	72 U	27000	120	25 U	89 U	110	8.4 U	81 U	1300 J	11 U	81 U	200
S0400HT4Z09	56 U	5.6 U	72 U	23000	95	25 U	89 U	120	11 J	81 U	1500 J	11 U	84 J	170
S0400HT4Z10	56 U	5.6 U	72 U	23000	93	25 U	89 U	79 J	113	81 U	1100 U	14 J	97 J	190
S0400HT4Z11	56 U	5.6 U	72 U	23000	110	25 U	89 U	97	9.6 J	81 U	1900 J	11,U	450	200
S0400HT4Z12	56 U	5.6 U	72 U	23000	95	25 U	89 U	82 J	8.4 U	81 U	1400 J	11 U	120 J	210
S0400SP1Z1	28 U	6.3 U	130 U	22000	93	8.1 U	89 J	220	11 U	130 U	1300 J	12 U	130	210
S0401SP1S1	28 U	6.3 U	130 U	35000	77	8.1 U -	220	79	11 U	130 U	1500 J	15 J	6000	170
S0401SP1S1B	28 U	6.3 U	130 U	3400 U	21 U	8.1 U	53 J	18 U	11 U	130 U	860 U	12 U	37 U	20
S0401SP1Z1	28 U	6.3 U	130 U	20000	76	8.1 U	73 J	220	15 J	130 U	1700 J	12 U	2000	180
S0407IH1A1	31 U	4.3 U	97 U	20000	98	23 U	90 U	160	11 U	65 U	2600 J	15 J	890	330
S0407IH1Z1	31 U	4.3 U	97 U	19000	94	23 U	90 U	220	11 U	65 U	2700 J	7.8 U	560	300.
S0407IH1Z1B	31 U	4.3 U	. 97 บ	3300 U	18 U	23 U	90 U	36 U	າາ ບ	65 U	980 U	7.8 U	54 U	18
S0700FG1A13	3i U	4.3 U	97 U	23000	91	23 U	-90 U	150	11 U	65 U	1200 J	7.8 Ų	2200	150
S0700PG1A3	31 U	4.3 U	97 U	32000	100	23 U	90 U	110 J	11 U	65 U	1600 J	12 J	4000	210
S0700FG1A6	31 U	4.3 U	97 U	33000	74	23 U	170 J	58 J	11 U	65 U	1900 J	10 J	4400	150.
S0700FG1Z1	31 U	4.3 U	97 U	24000	110	23 U	90 U .	84 J	11 U	65 U	1700 J	. 12 J	1100	200
S0700FG1Z2	31 U	4.3 U	97 U	23000	83	23 U	90 U	81 J	11 U	65 U	1500 J	18 J	4400	190
SOFILLA1		·. 9.7 U	97 U	22000	92	23 U	- 64 U	240	5.8 J	90 U	2500 J	11 U	86 U	220
SOFILLA2	45 U	9.7,U	97 U	26000	87	23 U	64 U	250	113	90 U	2500 J	11 U	86 U	190

U - The analyte was not detected above the detection limit. the detection limit is reported.

J - The associated numerical value is an estimated quantity between the detection limit and the quantitation limit.

TABLE 1B
Site Name
SPECTRACE 9000 XRF DATA (PPM)

ID	Hg	Mo	Ni	K	Rb	Se	Ag	Sr	Th	Sn	Ti	U	Zn	Zr
S0FILLB1	31 U	4.3 U	97 U	28000	120	23 U	90 U	120 J	11 U	65 U	2600 J	15 J	110 J	240
S0FILLB2	31 U	4.3 U	97 U	26000	100	23 U	90 U	93 J	11 U	65 U	1900 J	16 J	60 J	200
S0FILLB2D	31 U	4.3 U	97 U	30000	100	23 U	90 U	140	11 U	65 U	1500 J	8 J	54 U	190
S0FILLC1	31 U	4.3 U	97 U	30000	97	23 U	90 U	62 J	11 U	65 U	2700 J	11 J	54 U	250
S0STGARA1	45 U	9.7 U	97 U	20000	110	23 U	82 J	130	7.7 J	90 U	2700 J	11 U	110 J	230
S0STGARA1D	45 U	9.7 U	97 U	22000	100	23 U	64 U	140	6.3 J	90 U	2600 J	12 J	92 J	250
S0STGARA2	45 U	9.7 U	97 U	21000	93	23 U	64 U	120	14 J	90 U	2500 J	16 J	110 J	240
S0STKPLA1	28 U	6.3 U	130 U	26000	88	8.1 U	40 U	130	11 U	130 U	2100 J	12 U	2900	190
S0STKPLB1	31 U	4.3 U	97 U	24000	93	23 U	90 U	120	12 J	65 U	1400 J	11 J	1100	200
S400HT4Z4	57 U	9.2 U	99 U	25000	91	28 U	120 U	170	15 U	110 U	1200 J	15 U	300 J	140

































U - The analyte was not detected above the detection limit. the detection limit is reported.

J - The associated numerical value is an estimated quantity between the detection limit and the quantitation limit.

## APPENDIX D

**Street Codes for Sample Identification** 

Street	Code
1ST STREET	1S
2ND AVENUE EAST	2E
2ND AVENUE WEST	2W
3RD AVENUE EAST	3E
3RD AVENUE WEST	3W
3RD STREET	3S
4TH AVENUE EAST	4E
4TH AVENUE WEST	4W
4TH STREET	4S
5TH AVENUE EAST	5E
5TH AVENUE EAST	5E
5TH STREET WEST	FI
6TH AVENUE EAST	6E
7TH STREET	78
ALDER STREET	AL
ALLEY BETWEEN 4TH & 5TH AVENUE	4A
ALLEY BETWEEN 5TH & 6TH AVENUE	5A
ALLEY BETWEEN ALDER & SPRUCE	SA '
ALLEY BETWEEN PINE & SPRUCE	PA
ARIZONA AVENUE	AR
CALIFORNIA AVENUE	CA
CEDAR STREET	CE
CEMETARY ROAD	СМ
CITY SHOP	SP
COUNTRY LANE	CO
DIAMOND ROAD	DI
ELEMENTARY SCHOOL	EM
EVA HORNING PARK	EH
FAIRGROUNDS	FG
FLAT CREEK ROAD	FC
HIGH SCHOOL	HS
HIGH SCHOOL TRACK	нт
ILLINOIS AVENUE	L
IRON MOUNTAIN HIGHT	IH
IRON MOUNTAIN ROAD	IM
LITTLE PARK	LP
MAIN STREET WEST	MN
MAPLE STREET	MA
MONTANA AVENUE	MT
MULLAN ROAD EAST	ME
MULLAN ROAD WEST	MW
OLAD MULLAN ROAD	ОМ
PIKE STREET	PD
RIVER STREET	RI
RIVER STREET NORTH	RN
RIVERBEND ROAD	RB

Street	Code
RIVERSIDE ROAD	RV
RIVERSIDE ROAD ALLEY	RA
RIVERSIDE ROAD WEST	RW
RIVERSTREET/JOHNSON LANE OPENSPACE	os
ROBINS NEST LANE	RL
SHAW GULCH LANE	SG
SLOWAY WEST	sw
SOUTHSIDE ROAD	SO
SPRITIS WALK LANE	SL.
SPRUCE STREET	SP
SUNNYSIDE LANE	SU
WESTFIELD PARK	WF

## APPENDIX E

**Bench Scale Stabilization Test Procedure** 

Superior Waste Rock (ROS)
Bench Scale Stabilization Test Procedure

#### Assumptions:

1. Excavated moist earth: 90 lbs/cu.ft

2. Portland cement: 94 lbs/cu.ft.

#### Background:

During removal activities, material which visually appeared to be contaminated was placed on stockpile A. All other material was placed on stockpile B. Samples were collected from both stockpiles. Samples were 15 point composite samples that were each homogenized before analysis. Both stockpiles were tested for total metals and TCLP to get more accurate values for characterization (versus the worst case TCLP samples collected previously). The field stabilization tests were completed on material from stockpile A only.

#### Procedure:

START2 collected approximately 10 gallons of soil from stockpile A. The material was collected from 15 different locations and homogenized to get a representative sample. Approximately 2 gallons of material was placed in each 5-gallon bucket (5 buckets total). A sample was collected from the control bucket (this is the stockpile A sample described in the background section). Based on assumption (1), 2 gallons of soil weighs 28 lbs. START2 used this value to calculate the amount of cement needed. This made the percentage of cement by weight a little less because it is based on the weight of the soil and not the total weight.

ID .	Soil Weight	Cement Added	Total Weight	Actual % Cement
Control	28 lbs soil	0 lbs cement	28 total lbs	0%
7% cement by weight	28 lbs soil	1.96 lbs cement	29.96 total lbs	6.5%
10% cement by weight	28 lbs soil	2.8 lbs cement	30.8 total lbs	9%
15% cement by weight	28 lbs soil	4.2 lbs cement	32.2 total lbs	13%
20% cement by weight	28 lbs soil	5.6 lbs cement	33.6 total lbs	17%

START2 used assumption (2) to determine the volume of cement needed to add to each test bucket. These were 19, 29, 43, and 57 ounces of cement respectively. This was done because a scale was not available for the test.

START2 added the appropriate amount of cement to each of the 4 buckets, dry mixed the soil and cement completely and then added water and followed the same mixing procedure. The mixing procedure used a stainless steel spoon to disperse the cement and/or water into the soil

and then a lid was used to cover the bucket. The bucket was then rolled and flipped until the material was completely mixed.

Based on laboratory data from the site investigation, the soil in Superior had an average moisture content of approximately 12%. When completing the treatment test, START2 used 20 ounces of water to the 7% cement/soil mixture (this seemed like the minimum amount of water required to mix in with the soil/cement mixture). This calculates to about 17% total soil moisture.